POUŽITELNÉ VZORCE PRE PREDMET

TEÓRIA HROMADNEJ OBSLUHY

Rozdelenie	$\operatorname{bin}(n, p)$	$\operatorname{hyge}(M, K, n)$	$\operatorname{poiss}(\lambda)$	$\operatorname{unif}(a, b)$	$\exp (\lambda)$	$\operatorname{norm}(\mu, \sigma)$
$\mathrm{E}(X)$	$n \cdot p$	$\frac{n \cdot K}{M}$	λ	$\frac{(a+b)}{2}$	λ	μ
$\mathrm{D}(X)$	$n \cdot p \cdot(1-p)$	$\frac{n K(M-K)(M-n)}{M^{2}(M-1)}$	λ	$\frac{(a+b)^{2}}{12}$	λ^{2}	σ^{2}

$p(n+1)=p(n) \cdot P ; \quad p(n+1)=p(0) \cdot P^{n+1} ; \quad a \cdot P=a ; \quad Z=[I-(P-A)]^{-1}=I+\sum_{n=1}^{\infty}\left(P^{n}-A\right) ;$
$M=P \cdot(M-\hat{M})+E ; \quad M=(I-Z+E \cdot \hat{Z}) \cdot \hat{M}$.
$p(t+\Delta t)=p(t) \cdot P(t, t+\Delta t) ; \quad p(t+\Delta t)=p(t) \cdot(I+A(t) \cdot \Delta t) ; \quad F(s)=p(0) \cdot[s \cdot I-A]^{-1}$.
$p(t+\Delta t)=p(t) \cdot P ; \quad p_{0}=1-\frac{\lambda}{\mu}=1-\rho ; \quad P(N>\mathrm{n})=\rho^{\mathrm{n}+1} ; \quad P(N>0)=\rho=1-p_{0} ; \quad \bar{T}=\frac{\bar{n}}{\lambda} ;$
$\bar{n}=\rho \cdot(1-\rho) \cdot \sum_{n=1}^{\infty} n \cdot \rho^{n-1} ; \quad \bar{n}=\frac{\rho}{1-\rho}=\frac{\lambda}{\mu-\lambda} ; \quad \bar{n}_{f}=\bar{n}-\left(1-p_{0}\right)=\frac{\rho^{2}}{1-\rho}=\frac{\lambda^{2}}{\mu \cdot(\mu-\lambda)} ; \quad \bar{T}_{f}=\bar{T}-\frac{1}{\mu} ;$
$p(t+\Delta t)=p(t) \cdot P ; \quad p_{n}=p_{0} \cdot \frac{\rho^{n}}{n!} ; \quad p_{n}=p_{0} \cdot \frac{\rho^{n}}{S^{n}} \cdot \frac{S^{S}}{S!} ; \quad p_{0}=\left[\sum_{k=0}^{S-1} \frac{\rho^{k}}{k!}+\frac{\rho^{S}}{S!} \cdot \frac{1}{1-\frac{\rho}{S}}\right]^{-1} ;$
$P(N>S)=p_{0} \cdot \frac{1}{1-\frac{\rho}{S}} ; \quad \bar{n}_{f}=\sum_{n=S+1}^{\infty}(n-S) \cdot p_{n} ; \quad \bar{S}=\sum_{n=0}^{S}(S-n) \cdot p_{n} ;$
$\bar{n}_{f}=p_{0} \cdot \frac{\rho^{S+1}}{(S+1)!} \cdot \frac{1}{\left(1-\frac{\rho}{S}\right)^{2}} ; \quad \bar{T}_{f}=\frac{\bar{n}_{f}}{\lambda} ; \quad \bar{T}=\frac{\bar{n}}{\lambda}=\bar{T}_{f}+\frac{1}{\mu} ; \quad \bar{S}=S-\rho$.
$p_{n}=\left(\frac{\lambda}{\mu}\right)^{n} \cdot p_{0} ; \quad p_{n}=0 ; \quad p_{0}=\frac{1-\rho}{1-\rho^{N+1}} ; \quad p_{0}=\frac{1}{N+1} ; \quad p_{n}=\frac{(1-\rho) \cdot \rho^{n}}{1-\rho^{N+1}} ; \quad p_{n}=\frac{1}{N+1} ;$
$\bar{n}=\sum_{n=0}^{N} n \cdot p_{n}=\frac{\rho \cdot\left[1-(N+1) \cdot \rho^{N}+N \cdot \rho^{N+1}\right]}{(1-\rho) \cdot\left(1-\rho^{N+1}\right)} ; \quad \bar{n}=\sum_{n=0}^{N} n \cdot p_{n}=\frac{N}{2} ; \quad \bar{n}_{f}=\bar{n}-\frac{\rho \cdot\left(1-\rho^{n}\right)}{1-\rho^{N+1}} ; \bar{T}=\frac{\bar{n}}{\lambda^{*}} ;$
$\bar{T}_{f}=\frac{\bar{n}_{f}}{\lambda^{*}} ; \quad \lambda^{*}=\lambda \cdot\left(1-p_{N}\right) ; \quad p_{N}=\frac{(1-\rho) \cdot \rho^{N}}{1-\rho^{N+1}}=p_{0} \cdot \rho^{N}$.
$p_{n}=\frac{1}{n!}\left(\frac{\lambda}{\mu}\right)^{n} \cdot p_{0}=p_{0} \cdot \frac{(S \cdot \rho)^{n}}{n!} ; \quad p_{n}=\frac{1}{S!\cdot S^{n-S}}\left(\frac{\lambda}{\mu}\right)^{n} \cdot p_{0}=p_{0} \cdot \frac{S^{S} \cdot \rho^{n}}{S!} ; \quad p_{0}=\left[\sum_{n=0}^{S-1} \frac{(S \cdot \rho)^{n}}{n!}+\sum_{n=S}^{N} \frac{(S \cdot \rho)^{n}}{S!\cdot S^{n-S}}\right]^{-1} ;$ $\bar{n}_{f}=\sum_{n=S}^{N}(n-S) \cdot p_{n}=p_{0} \cdot \frac{S^{S} \rho^{S+1}}{S!\cdot(1-\rho)^{2}} \cdot\left[1-\rho^{N-S+1}-(1-\rho) \cdot(N-S+1)^{N-S}\right] ; \quad \bar{T}_{f}=\frac{\bar{n}_{f}}{\lambda^{*}} ; \quad \bar{T}=\bar{T}_{f}+\frac{1}{\mu}$.
$p_{n}=p_{0} \cdot \rho^{n} \cdot \frac{M!}{(M-n)!} ; \quad p_{n}=0 ; \quad p_{0}=\left[\sum_{n=0}^{M} v^{n} \cdot \frac{M!}{(M-n)!}\right]^{-1} ;$
$p_{n}=p_{0} \cdot\left(\frac{\lambda}{\mu}\right)^{n} \cdot\binom{M}{n}=p_{0} \cdot\left(\frac{\lambda}{\mu}\right)^{n} \cdot \frac{M!}{n!(M-n)!} ;$
$p_{n}=p_{0} \cdot\left(\frac{\lambda}{\mu}\right)^{n} \cdot\binom{M}{n} \cdot \frac{n!}{S!S^{n-S}}=p_{0} \cdot\left(\frac{\lambda}{\mu}\right)^{n} \cdot \frac{M!}{S!\cdot S^{n-S} \cdot(M-n)!} ; \quad p_{n}=0 ;$
$p_{0}=\left[\sum_{n=0}^{S-1}\binom{M}{n} \cdot\left(\frac{\lambda}{\mu}\right)^{n}+\sum_{n=S}^{M}\binom{M}{n} \cdot\left(\frac{\lambda}{\mu}\right)^{n} \cdot \frac{n!}{S!S^{n-S}}\right]^{-1} ;$
$\bar{n}=p_{0} \cdot\left[\sum_{n=0}^{S-1} n \cdot\binom{M}{n} \cdot\left(\frac{\lambda}{\mu}\right)^{n}+\sum_{n=S}^{M} n \cdot\binom{M}{n} \cdot\left(\frac{\lambda}{\mu}\right)^{n} \cdot \frac{n!}{S!\cdot S^{n-S}}\right] ;$
$\bar{n}_{f}=\sum_{n=S}^{M}(n-S) \cdot p_{n}=\bar{n}-S+p_{0} \cdot \sum_{n=0}^{S-1}(S-n) \cdot\binom{M}{n} \cdot\left(\frac{\lambda}{\mu}\right)^{n} \quad \bar{T}=\frac{\bar{n}}{\lambda \cdot(M-\bar{n})} ; \quad \bar{T}_{f}=\frac{\bar{n}_{f}}{\lambda^{*}}=\frac{\bar{n}_{f}}{\lambda \cdot(M-\bar{n})}$.
$p_{n}=\sum_{m=0}^{n-1}\left(p_{(n-m), m, 1}+p_{m,(n-m), 2}\right)=(1-\rho) \cdot \rho^{n} ; \quad p_{0}=1-\rho ; \quad \bar{n}_{1}=\frac{\left(\frac{\lambda_{1}}{\mu}\right) \cdot\left(1+\rho-\frac{\lambda_{1}}{\mu}\right)}{1-\frac{\lambda_{1}}{\mu}} ; \quad \bar{n}_{f 1}=\frac{\rho \cdot\left(\frac{\lambda_{1}}{\mu}\right)}{1-\frac{\lambda_{1}}{\mu}} ;$
$\bar{n}_{2}=\frac{\left(\frac{\lambda_{2}}{\mu}\right) \cdot\left(1-\frac{\lambda_{1}}{\mu}+\rho \frac{\lambda_{1}}{\mu}\right)}{(1-\rho) \cdot\left(1-\frac{\lambda_{1}}{\mu}\right)} ; \quad \bar{n}_{f 2}=\frac{\rho \cdot\left(\frac{\lambda_{2}}{\mu}\right)}{(1-\rho) \cdot\left(1-\frac{\lambda_{1}}{\mu}\right)} ; \quad \bar{T}_{f 1}=\frac{\lambda}{\mu \cdot\left(\mu-\lambda_{1}\right)} ; \quad \bar{T}_{f 2}=\frac{\lambda}{(\mu-\lambda) \cdot\left(\mu-\lambda_{1}\right)}$.

