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Preface

The textbook Mathematics 1 contains an overview of the theory, solved
examples and unsolved tasks for subject Mathematics 1 for bachelor’s de-
grees students at Applied Informatics, Faculty of Electrical Engineering and
Informatics, Technical University of Košice. The textbook consists of five
chapters. Each chapter is divided into sub-chapters in particular areas of
Mathematics. At the end of each chapter are subsections Solved Examples,
Unsolved Tasks and results of them.

In addition to numerical mathematics are in this textbook the theory and
examples of basic information from mathematical analysis and linear algebra,
as this required course of study Applied Informatics.

This textbook is available on CD and on the web site DMTI FEEI TUKE
(KMTI FEI TU) and Moodle system, which is managed by the FEEI TUKE.

Košice, 31st of August 2014 Author
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Chapter 1

Real Function

1.1 Real Number
Natural (denoted by N) Natural numbers are the counting numbers N =

{1, 2, 3, 4, . . . }. Natural numbers are called also positive integers. The
whole numbers {0, 1, 2, 3, 4, . . . } are denoted by N0 and are also called
non-negative integers. These numbers represent the cardinality of sets.1
For natural numbers applies the principle of complete mathematical
induction. If N is any set of positive integers that contains the number
1, and that with each natural number n contains the number n + 1,
then set N contains all natural numbers, i. e. N = N.

Integer (denoted by Z) Integers are the natural numbers, zero and their
negatives Z = {. . . − 4,−3,−2,−1, 0, 1, 2, 3, 4, . . . }.

Rational (denoted by Q) Rational number is a number that can be ex-
pressed as a fraction of an integer numerator m and a non-zero integer
number denominator n. Fractions are written as two numbers, the nu-
merator and the denominator, with a dividing bar between them. In
the fraction written

m

n
= numerator

denominator ,

m represents equal parts, where n equal parts of that size make up
m wholes. Two different fractions may represent the same rational

1Mathematicians use the term “natural” in both cases.

17
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number. For example:
2
3 = 4

6 = −−6
9 .

If the absolute value of m is greater than the absolute value of n, then
the absolute value of the fraction is greater than 1. Fractions can be
greater than, less than, or equal to 1 and can also be positive, negative,
or 0. The set of all rational numbers includes the integers, since every
integers can be written as a fraction with denominator 1. Formally

Q =
{
q : q = m

n
;m,n ∈ Z and n 6= 0

}
.

A rational number is a real number that is the quotient of integers.
Each rational number can be written in lowest terms, that is, as a
quotient of integers with no common factor larger than 1.

Irrational (denoted by I or Ir) Irrational numbers are real numbers that
cannot be written as a simple fraction. Irrational means not rational.
These are numbers that can be written as decimals, but not as fractions.
They are non-repeating, non-terminating decimals. Famous irrational
numbers are π, e,

√
2.

Real (denoted by R) Real numbers is the set which is denoted by the letter R.
Every number (except complex numbers) is contained in the set of real
numbers. When the general term “number” is used, it refers to a real
number. Real numbers are all the numbers on the continuous number
line with no gaps. Every decimal expansion is a real number. Real num-
bers may be rational or irrational, and algebraic or non-algebraic (tran-
scendental). Real numbers π = 3.14159 . . . and e = 2.71828 . . . are
transcendental. A transcendental number can be defined by an infinite
series. Real numbers can also be positive, negative or zero. The square
root of minus 1 (

√
−1 = i) is not a real number, it is an imaginary

number. Infinity (∞) is not a real number.

Complex (denoted by C)2 Definition of complex numbers you can see in [1,
4, 11].

Properties of real numbers:
2Each of the number set mentioned is a proper subset of the next number set. Sym-

bolically, N ⊂ Z ⊂ Q ⊂ R ⊂ C.
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(a) Commutative laws: ∀a, b ∈ R : a+ b = b+ a,
∀a, b ∈ R : a · b = b · a,

(b) Associative laws: ∀a, b, c ∈ R : (a+ b) + c = a+ (b+ c),
∀a, b, c ∈ R : (a · b) · c = a · (b · c),

(c) Distributive laws: ∀a, b, c ∈ R : a · (b+ c) = a · b+ a · c,
∀a, b, c ∈ R : (a+ b) · c = a · c+ b · c,

(d) ∀a ∈ R: a+ 0 = a,
(e) ∀a ∈ R: a · 1 = a,
(f) For each real number a there exists a real number −a, such that

a+ (−a) = 0,
(g) For each real number a 6= 0 there exists a real number a−1 ∈ R, such

that a · a−1 = 1.

The real number line is like an actual geometric line. A point is chosen
on the line to be the “origin” (zero = 0), points to the right will be positive,
and points to the left will be negative. A distance is chosen to be “1”. We
choose a starting point, a unit length and a positive direction (the direction
from 0 toward 1). Then we mark the points 2, 3, 4, . . . to the right and the
points −1,−2,−3,−4, . . . to the left of the starting point. To complete the
labelling, we must make a fundamental assumption. We take it as an axiom
that there is a one-to-one correspondence between the points on the line and
the system R of real numbers. Any point on the line is a real number.

More precisely:

• Each real number a corresponds to a point Pa on the line.

• Each point P on the line is correspondent of a single real number a.

• If Pa is left of Pb, then b− a is the distance between the points Pa and
Pb.

Because of the close association of the real number system R with the set
of points on a line, it is common to refer to a line as the real number system
and to the real number system as a line: the real line or the number line (see
Figure 1.1).

Remark 1.1 In general, the rules for order of operations are as follows:

• Parentheses – perform operations that are in parentheses first, working
from the inside out.
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• Exponents – evaluate all powers.

• Multiplication and Division – multiply and divide from left to right.

• Addition and Subtraction – add and subtract from left to right.

x0 1
2

1
√
2 2 π 4−1

4
−1−4

Pa Pb

Figure 1.1: The real number line.

Definition 1.1 If a real number a is positive, then we write a > 0. If a
real number a lies to the left of real number b (or real number b − a > 0 is
positive), then we say that “a is less than b” and we write:

a < b.

Alternatively, if a real number a lies to the right of real number b (or real
number a− b > 0 is positive), then we say that “a is greater than b” and we
write:

a > b.

The notation a 5 b, which is read “a is less than or equal to b”, means that
either a < b or a = b. The same condition can be written b = a, then it
is read “b is greater than or equal to a”. The relations less than and greater
than and so on impose what is called order on the real number system (see
Figure 1.2).

x0 1 2 4−1−4

a bd c

Figure 1.2: The relations: a < b and c > d.
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Theorem 1.1 (Properties of Order)

(a) Reflexivity: ∀a ∈ R: a 5 a,
(b) Anti-symetry: ∀a, b ∈ R: if a 5 b and b 5 a, then a = b,
(c) Transitivity: ∀a, b, c ∈ R: if a 5 b and b 5 c, then a 5 c,
(d) Trichotomy: If a and b are real numbers, then exactly one

of these three relations holds:
(1) a < b
(2) a > b
(3) a = b.

(e) The arithmetic operations +, −, · and ÷ are closely linked to the order
relations

(1) ∀a, b ∈ R: a+ b ∈ R
(2) ∀a, b ∈ R: a− b ∈ R
(3) ∀a, b ∈ R: a · b ∈ R
(4) ∀a, b ∈ R: a÷ b ∈ R.

(f) If a < b and if c is any real number, then a+ c < b+ c and a− c < b− c.
(g) ∀a, b, c ∈ R: a < b ∧ c > 0 ⇒ ac < bc.
(h) ∀a, b, c ∈ R: a < b ∧ c < 0 ⇒ ac > bc.
(i) ∀a, b, c, d ∈ R: a < b ∧ c ≤ d ⇒ a+ c < b+ d.
(j) If 0 < a < b or a < b < 0, then 1/b < 1/a.
(k) The statement a < b is equivalent to the statement b− a > 0.
(l) If x is any real number, then x2 = 0. If x2 = 0, then x = 0.

Theorem 1.2 We can order rational numbers as follows: If q, r ∈ Q, q = a

b
and r = c

d
, where a, c ∈ Z and b, d ∈ N, then holds:

(1) q < r, if a · d < b · c,

(2) q = r, if a · d = b · c,

(3) q > r, if a · d > b · c.

Definition 1.2 Algebraic numbers are those that can be expressed as the
solution to a polynomial equation with integer coefficients. The complement
of the algebraic numbers are the transcendental numbers. Real number α
is called algebraic, if α is root of some algebraic equation of the form an ·
xn + an−1 · xn−1 + an−2 · xn−2 + an−3 · xn−3 + · · · + a1 · x + a0 = 0 with
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rational coefficients a1, a2, a3, . . . , an. If number α is not algebraic, then it
called transcendental. Transcendental numbers are for example π or e and
so on.

Definition 1.3 The setK ⊆ R of real numbers is called bounded from above,
if there exists real number U such that, U is greater then or equal to every
numbers of set K. Number U is called upper bound of set K. A set K
with an upper bound U is said to be bounded from above by that bound.
The set K ⊆ R of real numbers is called bounded from below, if there exists
real number L such that, L is less then or equal to every numbers of set
K. Number L is called lower bound of set K. A set K with a lower bound
L is said to be bounded from below by that bound. The set K is called
bounded (bounded set), if there exist upper and lower bound simultaneously.
Let K ⊆ R. Upper bound of set K is called every real number U ∈ R:
∀x ∈ K is x 5 U . Let K ⊆ R. Lower bound of set K is called every real
number L ∈ R: ∀x ∈ K is x = L.

Definition 1.4 Least upper bound of set K ⊆ R is called suprema of set
K. It is denoted by sup(K). Greatest lower bound of set K ⊆ R is called
infima of set K. We will denote it by inf(K).

Theorem 1.3 Every nonempty set of real numbers bounded from above
has suprema. Every nonempty set of real numbers bounded from below has
infima.

Definition 1.5 If set K contains an upper bound then that upper bound is
unique and is called the greatest element of set K (maximum). It is denoted
by max(K).

Definition 1.6 If set K contains a lower bound then that lower bound is
unique and is called the least element of set K (minimum). It is denoted by
min(K).

Theorem 1.4 The greatest element of K (if it exists) is also the least upper
bound of K (suprema of K). Let K ⊆ R. Maximum of set K is real number
M ∈ K, for which holds: ∀x ∈ K is x 5 M . If M = max(K) exists, then
sup(K) = max(K).

The least element of K (if it exists) is also the greatest lower bound of
K (infima of K). Let K ⊆ R. Minimum of set K is real number m ∈ K,
for which holds: ∀x ∈ K is x = m. If m = min(K) exists, then inf(K) =
min(K).
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Theorem 1.5 Between two different real numbers lie infinitely many ratio-
nal numbers and infinitely many irrational numbers.

Remark 1.2 Let set K ⊆ R is given. For set K holds: inf(K) and sup(K)
may or may not belong to the set K. This follows from the Theorem 1.4.

Definition 1.7 The absolute value of real number a, written |a|, is the dis-
tance on the real number line from a to 0. It comes to this, that:

|a| =
{

a if a = 0,
−a if a < 0.

For any real numbers a and b, we say that b is larger in magnitude than a if
|b| > |a|.

Theorem 1.6 Rules for absolute value are:

(1) | − a| = |a|,

(2) |a · b| = |a| · |b|,

(3)
∣∣∣a
b

∣∣∣ = |a|
|b| ; where b 6= 0,

(4) |a+ b| 5 |a|+ |b|,

(5) |a− b| 5 |a|+ |b|,

(6) |a| − |b| 5 |a− b|.

Definition 1.8 The set of all numbers between two fixed numbers is called
an interval on the number line. The interval may include one or both of its
end points, or neither. The interval that includes both end points is called a
closed interval. We use the notation: 〈a, b〉. The interval that excludes both
end points is called an open interval. We use the notation: (a, b). We also
need notation for hybrid intervals called half-open or half-closed intervals.
Let a, b ∈ R, a < b, and then the suggestive notation for these intervals is:

• 〈a, b〉, for all points x ∈ 〈a, b〉 satisfying: a 5 x 5 b,

• (a, b), for all points x ∈ (a, b) satisfying: a < x < b,

• (a, b〉, for all points x ∈ (a, b〉 satisfying a < x 5 b,
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• 〈a, b), for all points x ∈ 〈a, b) satisfying a 5 x < b.

The intervals that we have defined so far are bounded. We also deal with
unbounded intervals, these are, intervals that go off indefinitely in one direc-
tion or the other. We use one of the following notations: (−∞, b), (−∞, b〉,
〈a,∞), (a,∞) and (−∞,∞). This is shown on the Figure 1.3.

Remark 1.3 Using absolute values and inequalities, we can develop nice
shorthand to express geometrical facts about distances and intervals.

• The inequality |x− a| < r describes the open interval (a− r, a+ r),

• The inequality |x− a| 5 r describes the closed interval 〈a− r, a+ r〉.

We can think of |x−a| < r as representing the open interval with “center” at
a and “radius” equal to positive real number r. In calculus, the Greek letter
ε (epsilon) generally denotes a small positive real number, so |x − a| < ε
describes a small interval centered at a (neighbourhood or ε-neighbourhood
of point a, O(a) or Oε(a)). These terms can be used to express a simple, but
important principle:

If |x| < ε for every ε > 0, then x = 0.

x0a bdc e

Figure 1.3: Display of the intervals on the number line: (a, b〉, (c, d),, 〈a, e),
〈0, d〉.

1.2 The Real Function of One Real Variable
Definition 1.9 Let the symbol x represents any real number belonging to a
certain set D ⊆ R of real numbers. Suppose there is a rule f that associates
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with each such x a real number y. Then this rule f is called a function whose
domain is the set D = D(f). We can think of a function as a “black box”,
that is a machine whose inner workings are hidden from us. We input an x
from D, the “black box” outputs a y. The set of all numbers y that a function
assigns to the numbers x in its domain is called the range of the function
(R = R(f)). We sometimes say that a function maps its domain onto its
range (f : D −→ R). The symbol used to denote a typical real number
in the domain of a function is sometimes called the independent variable.
The symbol used to denote the typical real number in the range is called
the dependent variable. Generally, but not always, variables are denoted
by lower-case letters such as x, y, z, t, . . . Functions are generally denoted
by f, g, h, and capital letters. If f denotes a function, x the independent
variable, and y the dependent variable, then it is common practice to write
y = f(x), which reads: “y equals f of x” or “y equals f at x”. This means that
the function f assigns to each x in its domain a number f(x), which is also
written y. Given a function f , we can construct a geometric picture of the
function. For each number x in the domain of f , we find the corresponding
number y = f(x) in the range and then we plot the point [x, y]. The set of
all such points is called the graph of function f(x).

Remark 1.4 Suppose D ⊆ R and mapping f : D −→ R is a real function
of one real variable, then domain, range and graph are the following sets:

• D(f) = {x ∈ R : ∃!y ∈ R : y = f(x)}.

• R(f) = {y ∈ R : ∃x ∈ R : y = f(x)}.

• G(f) = {[x, y] ∈ R2 : y = f(x); x ∈ D(f)}.

Definition 1.10 Let f be a function and D(f) is its domain andM ⊆ D(f).
If for each of two real numbers x1, x2 ∈M such that x1 < x2 holds:

(a) f(x1) < f(x2), then the function f is called increasing on M ,

(b) f(x1) > f(x2), then the function f is called decreasing on M ,

(c) f(x1) 5 f(x2), then the function f is called non-decreasing on M ,

(d) f(x1) = f(x2), then the function f is called non-increasing on M .
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If function f is non-increasing or non-decreasing on M , then f is called
monotonic on M . If f is increasing or decreasing on set M , then f is called
strictly monotonic on M .

Remark 1.5 We can write this more formally:

(a) f is increasing on M if ∀x1, x2 ∈M : x1 < x2 =⇒ f(x1) < f(x2),

(b) f is decreasing on M if ∀x1, x2 ∈M : x1 < x2 =⇒ f(x1) > f(x2),

(c) f is non-decreasing on M if ∀x1, x2 ∈M : x1 < x2 =⇒ f(x1) 5 f(x2),

(d) f is non-increasing on M if ∀x1, x2 ∈M : x1 < x2 =⇒ f(x1) = f(x2).

A function which is increasing on its whole domain is called shortly increasing
(without a specification where). Similarly, one can introduce the notions of
a decreasing, non-increasing, non-decreasing, monotonic and strictly mono-
tonic function.

Definition 1.11 Function f : y = f(x) is said to be one-to-one (unique) if
for all x1, x2 ∈ D(f) such that x1 6= x2 holds: f(x1) 6= f(x2).

Definition 1.12 Let f be a function and D(f) be its domain. If for all
x ∈ D(f) is also −x ∈ D(f), then function f is called:

(a) even, if for all x ∈ D(f) holds: f(−x) = f(x),

(b) odd, if for all x ∈ D(f) holds: f(−x) = −f(x).

Remark 1.6 The graph of an even function is symmetric with respect to
the y-axis and the graph of an odd function is symetric with respect to the
origin, i. e. point O = [0, 0].

Definition 1.13 Let f be a function and D(f) be a domain of f . Let p be
a positive real number. Function f is called periodic with period p if

(1) ∀x ∈ D(f): x+ p ∈ D(f) and

(2) ∀x ∈ D(f): f(x+ p) = f(x).

The smallest positive real number p with the above properties is called a pe-
riod of the function f .
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Definition 1.14 Let functions g: z = g(x) g : A −→ C and f : y = f(x)
f : C −→ B (where A, B and C are subsets of real number set) are given.
If functions f and g are such functions that R(g) ⊂ D(f), we can define
a function F : y = F (x) by the equation y = f(g(x)) for x ∈ D(g). The
function F : A −→ B is called the composite function of functions f and g.
We use the notation F = f ◦ g. The function f is called the outside function
and the function g the inside function of the function F .

Definition 1.15 Let f : y = f(x) be a one-to-one function and D(f) be
a domain and R(f) be a range of function f . Function that assigns to each
real number y ∈ R(f), such that for real number x ∈ D(f) applies that
y = f(x) is called the inverse function of a function f , and denoted by the
symbol f−1. There are inverse mappings to one-to-one mappings, there are
also called inverse function to one-to-one functions.

Remark 1.7 The graphs of the functions f−1 and f are symmetric with
respect to the axis of the 1st and 3rd quadrant (i. e. straight line p: y = x).
For all x ∈ D(f) applies that f−1(f(x)) = x and for all y ∈ D(f−1) applies
that f(f−1(y)) = y. For functions f−1 and f applies that D(f−1) = R(f)
and R(f−1) = D(f). Inverse function exists only for one-to-one function. A
strictly monotonic function is one-to-one and so an inverse function exists.

Definition 1.16 Function f is called bounded from above (upper bounded)
if there exists a real number K ∈ R such that (∀x ∈ D(f): f(x) 5 K).
We can define analogously a function bounded from below (lower bounded).
Function f is called bounded if f is bounded from above and below. Assume
further that M ⊆ D(f). Function f is called upper bounded on the set M if
there exists a real number K ∈ R such that (∀x ∈ M : f(x) 5 K). We can
similarly define the notion of a function lower bounded on the set M and the
notion of a function bounded on the set M .

Definition 1.17 We say that function f has its maximum at the point x0 ∈
D(f) if (∀x ∈ D(f): f(x) 5 f(x0)). Analogously, function f has itsminimum
at the point x0. The maximum and minimum of function f are both called
extreme value of f . Suppose that M ⊆ D(f). We say that function f has its
maximum on the set M at the point x0 ∈ M if ∀x ∈ M : f(x) 5 f(x0). We
can also define the minimum of function f on the set M at the point x0 ∈M
if (∀x ∈M : f(x) = f(x0)).
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Definition 1.18 The supremum of the set of values of function f (i. e. of
the set R(f)) is called the supremum of the function f and it is the least
upper bound of f . The infimum of the set of values of the function f (i. e. of
the set R(f)) is called the infimum of the function f and it is the greatest
lower bound of f .

1.3 Elementary Functions

1.3.1 Constant Function

The general form of a constant function f is f : y = k, where k ∈ R. The
domain of the constant function is the set of all real numbers, D(f) = R.
Range is a single element set with element k, R(f) = {k}. Graph of the con-
stant function is a straight line parallel to the axis of x, which intersects the
axis of y in point [0, k]. See the Figure 1.4.

1.3.2 Linear Function

The general form of a linear function f is f : y = a · x + b, where a, b ∈ R
and a 6= 0. The domain of the function f and the range of the function f
is the real number set, D(f) = R(f) = R. The graph of the linear function
is a straight line. The coefficients of the linear function a and b have the
following meanings:3

a = tgϕ – slope of the line, which is a graph of a linear function,
a > 0 – linear function is increasing,
a < 0 – linear function is decreasing,
b – section which is cut off by the straight line on the y-axis,
b = 0 – the graph of linear function is passing through origin

of the coordinate system,
a = 0 – straight line is parallel to the axis x.

In this case (a = 0) it is not a linear function, but the function is constant.
3ϕ is the angle formed by a straight line (linear function graph) with positive orientation

of axis x.
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Figure 1.4: Function f1(x) is given by formula f1 : y = 3 and function f2(x)
is given by formula f2 : y = −2.

Functions shown in the Figure 1.5 are examples of linear functions. The
function f1 is given by the rule y = x. Graph of the function f1 is a straight
line that intersects the y axis at the point [0, 0] and the function f1 is in-
creasing. The function f2 is given by the rule y = x + 2. The graph of
the function f2 was created by moving the graph of the function f1 in the
positive direction with respect the y axis by 2. The graph of this function is
a straight line that intersects the y axis at the point [0, 2] and the function f2
is increasing. The function f3 is given by the rule y = −x− 1. The graph is
a straight line that intersects the y axis at the point [0,−1] and the function
f3 is decreasing.

1.3.3 Quadratic Function

A quadratic function f has the form f : y = a ·x2 + b ·x+ c, where a, b, c ∈ R
and a 6= 0. The domain of the function f is the real numbers set, D(f) = R
and the range of the quadratic function is set:
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Figure 1.5: Linear function: graphs of functions f1(x) = x, f2(x) = x + 2,
and f3(x) = −x− 1.

(a) R(f) =
〈
c− b2

4 · a,∞
)
, if a > 0 or

(b) R(f) =
(
−∞, c− b2

4 · a

〉
, if a < 0.

The graph of a quadratic function is a parabola whose axis is parallel to
the y axis. For the positive values of the parameter a is the parabola open
upwards and for the negative values of the parameter a is the parabola open
downwards. The peak V of parabola has coordinates:

V =
[
−b
2 · a, c−

b2

4 · a

]
.

The special forms of quadratic function:



31 1.3. ELEMENTARY FUNCTIONS

f : y = a · x2 – parabola with the peak at the point V = [0, 0],
f : y = a · x2 + c – parabola with the peak at the point V = [0, c],
f : y = a · (x+ d)2 – parabola with the peak at the point V = [−d, 0],
f : y = a · (x+ d)2 + k – parabola with the peak at the point V = [−d, k],
f : y = x2 + p · x+ q – standardized parabola with the peak at the point

V =
[
−p

2 , q −
(
p
2

)2
]
.
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Figure 1.6: Quadratic Function: graphs of functions f1(x) = 4− x2 , f2(x) =
x2, and f3(x) = x2 − 4.
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Three graphs of quadratic functions (parabolas) f1(x), f2(x) and f3(x)
are shown in the Figure 1.6. The function f2(x) is given by the rule f2: y = x2

and the peak is at the point [0, 0], which is the minimum of the function f2.
The function f3(x) is given by the rule f3: y = x2− 4 and the peak is at the
point [0,−4]. This peak is the minimum of the function f3. The function
f1(x) is given by the rule f1: y = 4− x2. The function f1 has the maximum
at the point [0, 4].

1.3.4 Power Function
A power function f has the form f : y = a ·xk, where k ∈ N, and a ∈ R−{0}.
The domain of the power function is the set of all real numbers, D(f) = R.

• for a > 0 and k = 2n, n ∈ N; the graph of the function f is a parabola
of k-th degree with the peak at the beginning of the coordinate system
V = [0, 0], which is open upward and the range is the set of non-negative
real numbers, R(f) = 〈0,∞),

• for a < 0 and k = 2n, n ∈ N; the graph of the function f is a parabola
of k-th degree with the peak at the beginning of the coordinate system
V = [0, 0], which is open downwards and the range is the set of non-
positive real numbers, R(f) = (−∞, 0〉,

• for a > 0 and k = 2n + 1, n ∈ N; the graph of the function f is
a parabola of k-th degree, which lies in the first and the third quadrant,
where the center of symmetry is the origin of the coordinate system,
point V = [0, 0]. The range of the function is the set R(f) = R,

• for a < 0 and k = 2n + 1, n ∈ N; the graph of the function f is
a parabola of k-th degree, which lies in the second and the fourth
quadrant, where the center of symmetry is the origin of the coordinate
system, point V = [0, 0]. The range of the function is the setR(f) = R.

If the exponent k can have a negative value, we obtain a function in the form
f : y = a · x−k, where k ∈ N and a ∈ R − {0}. The domain of this function
is the set of all real numbers excluding zero, D(f) = R− {0}.
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• for a > 0 and k = 2n, n ∈ N; the graph of the function f is a hyperbola
of k-th degree, which lies in the first and the second quadrant. The
range of the function is the set of positive real numbers, R(f) = (0,∞),

• for a < 0 and k = 2n, n ∈ N; the graph of the function f is a hy-
perbola of k-th degree, which lies in the third and the fourth quad-
rant. The range of the function is the set of negative real numbers,
R(f) = (−∞, 0),

• for a > 0 and k = 2n + 1, n ∈ N; the graph of the function f is a hy-
perbola of k-th degree, which lies in the first and the third quadrant,
where the center of symmetry is the origin of the coordinate system,
point V = [0, 0]. The range of the function is the set R(f) = R− {0}.
For n = 0 we obtain the function y = 1

x
(inversely proportional = low-

ers with raising), for which it holds: f = f−1. Its graph is a equiaxed
hyperbola,

• for a < 0 and k = 2n + 1, n ∈ N; the graph of the function f is
a hyperbola of k-th degree, which lies in the second and the fourth
quadrant, where the center of symmetry is the origin of the coordinate
system, point V = [0, 0]. The range of the function is the set R(f) =
R− {0}.

If the exponent k is chosen from the set of rational numbers, we get graphs
of functions that correspond to the square roots of real numbers. Example
of such functions can be functions shown in the Figure 1.7. These functions
have the following forms: f1: y =

√
x, f2: y =

√
x− 2, and f3: y = 2−

√
x.

1.3.5 Exponential Function

An exponential function f has the form f : y = ax, where a > 0 and a 6= 1.
The domain of the exponential function is the set of all real numbers, D(f) =
R. The range of the exponential function f is the set of positive real numbers,
R(f) = (0,∞). The graph of the exponential function is an exponential curve
that passes through the point [0, 1].The function is one-to-one. The function
is increasing for values of parameter a > 1 and the function is decreasing for
values of parameter a ∈ (0, 1). The most important of exponential functions
is the function y = ex, where e = 2,7182818 . . . (well-known Euler’s number),
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Figure 1.7: Function of the square root: the graphs of the functions f1(x) =√
x, f2(x) =

√
x− 2, and f3(x) = 2−

√
x.

which is called the natural exponential function. Exponential function is one
of the transcendent functions.

Examples of graphs of exponential functions are shown in the Figure 1.8.
The function f1 has the form y = ex. It intersects at the point [0, 1] the y
axis and it is increasing. The function f2 has the form y = ex5 . The function
f2 intersect the y axes at the point [0, 1] and it is also increasing and the
one-to-one function. The function f3 has the form y = 4− ex. The function
f3 intersect the axis of y at the point [0, 3]. The function f3 is decreasing
and it is the one-to-one function.

1.3.6 Logarithmic Function

A logarithmic function is the inverse function of the corresponding exponen-
tial function. The general form of the logarithmic function is f : y = loga x,
where a > 0 and a 6= 1. The domain of the logarithmic function is the set
of all positive real numbers, D(f) = (0,∞). The range of the logarithmic
function is the real numbers set, R(f) = R. The graph of the logarithmic
function is a logarithmic curve passing through the point [1, 0]. The function
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Figure 1.8: Exponential function: graphs of functions f1(x) = ex, f2(x) = ex5 ,
and f3(x) = 4− ex.
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is one-to-one. The logarithmic function is increasing for a > 1 and decreas-
ing for a ∈ (0, 1). The most important logarithmic functions are functions
y = loge x = ln x, where e = 2,7182818 . . . , which is called the natural loga-
rithmic function (natural logarithm) and y = log10 x = log x, which is called
the decadic logarithm. Logarithmic function also belongs to the transcendent
functions.
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Figure 1.9: Logarithmic function: the graphs of the functions f1(x) = ln x,
f2(x) = 2 · ln x, and f3(x) = 2− ln x

Examples of logarithmic functions are shown in the Figure 1.9. The
function f1: y = ln x intersects the x axis at the point [1, 0] and it is increasing
function. The graph of the function f2: y = 2 · ln x intersects the x axis at
the point [1, 0]. It is increasing and one-to-one function. The function f3:
y = 2− ln x is decreasing and one-to-one function.

1.3.7 Trigonometric Functions

Trigonometric functions is the common name for the functions sine (formally
y = sin x), cosine (y = cosx), tangent (y = tg x = sinx

cosx)
4, and cotangent

4In English texts is used such labelling of tangent function: y = tan x
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(y = cotg x = cosx
sinx )

5. The domain of the sine and the cosine functions is
the set of all real numbers, D(f) = R and the range is the closed interval
between −1 and 1, R(f) = 〈−1, 1〉. The domain of the tangent function
is the set D(f) = R − {π2 + kπ, k ∈ Z} and the domain of the cotangent
function is the set D(f) = R− {kπ, k ∈ Z}. The range of functions tangent
and cotangent is the real numbers set, R(f) = R. Trigonometric functions
are periodic. Functions sine and cosine have the period 2π and the tangent
and cotangent functions have the period π. For these functions holds, the
following equality for all x ∈ D(f):

sin x = sin(x+ 2π · k) for ∀k ∈ Z,
cosx = cos(x+ 2π · k) for ∀k ∈ Z,
tg x = tg (x+ k · π) for ∀k ∈ Z,
cotg x = cotg (x+ k · π) for ∀k ∈ Z.

Graphs of trigonometric functions are:

f1 = {[x, y] : y = sin x, x ∈ R, y ∈ 〈−1, 1〉} (sinusoid),
f2 = {[x, y] : y = cosx, x ∈ R, y ∈ 〈−1, 1〉} (cosinusoid),
f3 = {[x, y] : y = tg x, x ∈ R− {π2 + kπ, k ∈ Z}, y ∈ R} (tangentoid),
f4 = {[x, y] : y = cotg x, x ∈ R− {kπ, k ∈ Z}, y ∈ R} (cotangentoid).

Graphs of trigonometric functions sine, cosine, tangent, and cotangent
are shown in Figures 1.10, 1.11, 1.12, and 1.13. The function sin x is shown
in the Figure 1.10 as a function f1. The function f2 has the form y = 1+sin x.
The graph of the function f3 has the form y = −2 · sin x.

The function cosx is shown in the Figure 1.11. The graph of the function
f1 has the form y = cosx. the function f2 has the form y = 1 + cos x and the
graph of the function f3 is given by the form y = 3 · cosx. The graph of the
function f : y = tg x is shown in the Figure 1.12 and the graph of the function
f : y = cotg x is shown in the Figure 1.13. Points that do not belong to the
domain of these two functions are shown by dashed lines perpendicular to
the axis x.

5In English texts is used such labelling of cotangent function: y = cotx
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Figure 1.10: Function sine: the graphs of the functions f1(x) = sin x, f2(x) =
1 + sin x, and f3(x) = −2 · sin x.
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Figure 1.11: Function cosine: the graphs of the functions f1(x) = cosx,
f2(x) = 1 + cosx, and f3(x) = 3 · cosx.

1.3.8 Cyclometric Functions

Inverse trigonometric functions:
Trigonometric functions are not one-to-one in their domain of definition,
therefore, to them, there are not inverse functions. If we turn our attention
to the domain of a suitable interval so that it was a one-to-one function, then
we can define the inverse function of it. Thus created inverse functions of
trigonometric functions are called inverse trigonometric functions.

1. Function arcsine: The function y = sin x is increasing and one-to-
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Figure 1.12: Function tangent: the graph of the function f : y = tg x.

one on the closed interval 〈−π
2 ,

π
2 〉 and is mapping this interval to a

closed interval 〈−1, 1〉. The inverse function to the function sin x, for
x ∈ 〈−π

2 ,
π
2 〉 ⊆ D(f) is the function arcsine, y = arcsin x. The domain

of the function y = arcsin x is the interval D(f) = 〈−1, 1〉 and the
range of the function is the interval R(f) = 〈−π

2 ,
π
2 〉. The function is

increasing and is one-to-one on the interval 〈−1, 1〉.

2. Function arccosine: The function y = cos x is decreasing and one-
to-one on the closed interval 〈0, π〉 and is mapping this interval to a
closed interval 〈−1, 1〉. The inverse function to the function cosx, for
x ∈ 〈0, π〉 ⊆ D(f) is the function arccosine, y = arccosx. The domain
of the function y = arccosx is the interval D(f) = 〈−1, 1〉 and the
range of the function is the interval R(f) = 〈0, π〉. The function is
decreasing and one-to-one on the interval 〈−1, 1〉.
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Figure 1.13: Function cotangent: the graph of the function f : y = cotg x.

3. Function arctangent: The function y = tg x is increasing and one-to-
one on the opened interval

(
−π

2 ,
π
2

)
and is mapping this interval to the

set of all real numbers (−∞,∞). The inverse function to the function
tg x is the function arctangent, y = arctg x, for x ∈

(
−π

2 ,
π
2

)
⊆ D(f).

The domain of the function y = arctg x is the real numbers set D(f) =
R and the range of the function is the interval R(f) =

(
−π

2 ,
π
2

)
. The

function is increasing and one-to-one on the set (−∞,∞).

4. Function arccotangent: The function y = cotg x is decreasing and
one-to-one on the opened interval (0, π) and is mapping this interval
to the real numbers set (−∞,∞). The inverse function to the function
cotg x is the function arccotangent, y = arccotg x, for x ∈ (0, π) ⊆
D(f). The domain of the function y = arccotg x is the set of all real
numbers D(f) = R and the range of the function is the interval R(f) =
(0, π). The function is decreasing and one-to-one on the set (−∞,∞).
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1.3.9 Polynomial Function

A polynomial function (polynomial):
The polynomial of the n-th degree is the function:

P (x) = a0 + a1 · x+ a2 · x2 + a3 · x3 + · · ·+ an−1 · xn−1 + an · xn,

where a0, a1, a2, a3, . . . , an are real numbers and an 6= 0. Specially, if n = 0,
then P (x) is called the constant function, if n = 1, then P (x) is called
the linear polynomial (linear function), if n = 2, then P (x) is called the
quadratic polynomial (quadratic function) and if n = 3, then P (x) is the
cubic polynomial (cubic function).
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1.4 Limit of Function
Definition 1.19 We say that the function f : y = f(x) has a right side
limit (Right Hand Limit or Limit from the right) at the point a equal to
real number L, if following holds: (∀ε > 0)(∃δ > 0)(∀x ∈ (a, a + δ): (0 <
|x− a| < δ =⇒ |f(x)− L| < ε)). We write:

lim
x→a+

f(x) = L

and it is said the limit of the function f as x approaches a from the right
(above) is L.

Definition 1.20 We say that the function f : y = f(x) has a left side limit
(Left Hand Limit or Limit from the left) at the point a equal to real number
L, if following holds: (∀ε > 0)(∃δ > 0)(∀x ∈ (a− δ, a): (0 < |x− a| < δ =⇒
|f(x)− L| < ε)). We write:

lim
x→a−

f(x) = L

and it is said the limit of the function f as x approaches a from the left
(below) is L.

Definition 1.21 Let f : y = f(x) be a function with a domain D(f). Let
a be a point of the real axis such that D(f) contains points different from a
that are arbitrarily close to a. Let L be a real number. Then the limit as x
approaches a of f(x) is L:

lim
x→a

f(x) = L

if for each number ε > 0 there exists a number δ > 0 such that |f(x)−L| < ε
for all x in D(f) that the inequality 0 < |x − a| < δ holds. Formally, it is
written as follows: (∀ε > 0)(∃δ > 0)(∀x ∈ (a− δ, a+ δ): (0 < |x−a| < δ =⇒
|f(x)− L| < ε)).This means that there are the same two one-sided limits.

Remark 1.8 It does not mater whether a is in the domain D(f) or not.
Even if a is in D(f), the value of f(x) at a itself does not enter into the
definition, because we consider only points x for which 0 < |x − a|. The
definition depends only on the values of f(x) for x near a.
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Remark 1.9 The domain D(f) must contain points different from a but
arbitrarily close to a. The most important case are when D(f) is an interval
and a is the point of D(f), and when a is an end point of D(f) but not
necessarily in D(f). The expression “arbitrarily close to a” means that,
given any positive δ, no mater how small, there is a point x in D(f) such
that 0 < |x− a| < δ.

Remark 1.10 In practice, the definition works this way. If provided with
a arbitrary ε, you must determine a suitable δ. You must be able to do so
for every ε > 0, not just a particular ε. Note that the δ you produce will
depend on the ε you get. A δ that works for one particular ε will not work
for a different (much smaller) ε, generally.

Remark 1.11 Limits involving infinity: Suppose a function f(x) is defined
on a domain that includes arbitrarily large real numbers, and suppose L is
a real number. We define lim

x→∞
f(x) = L to mean that for any ε > 0, there

exists a real number N , such that |f(x) − L| < ε for all x in the domain of
f(x), such that x > N .

If a = ∞ or a = −∞, then for a real function f(x), the limit of f as x
approaches infinity (the limit of f(x) as x approaches negative infinity) is L,
denoted:

lim
x→∞

f(x) = L

or
lim

x→−∞
f(x) = L.

Theorem 1.7 If lim
x→a

g(x) = M and g(x) 6= M in a certain neighbourhood
of the point a and lim

z→M
f(z) = L, then lim

x→a
f(g(x)) = L.

Theorem 1.8 If a function f(x) is real-valued, then the limit of f(x) at
the point a is L if and only if both the right-hand limit and the left-hand
limit of f(x) at a exist and are equal to L. i. e.

lim
x→a−

f(x) = lim
x→a+

f(x) = lim
x→a

f(x) = L



CHAPTER 1. REAL FUNCTION 44

Theorem 1.9 (Basic Limit Rules) Let functions f : y = f(x) and g: y =
g(x) be given. Let lim

x→a
f(x) = L ∈ R and lim

x→a
g(x) = M ∈ R. Then:

(1) lim
x→a
|f(x)| = |L|,

(2) lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x) = L+M ,

(3) lim
x→a

(f(x)− g(x)) = lim
x→a

f(x)− lim
x→a

g(x) = L−M ,

(4) lim
x→a

(f(x) · g(x)) = lim
x→a

f(x) · lim
x→a

g(x) = L ·M ,

(5) If for all x from the neighbourhood of the point a is g(x) 6= 0 and

lim
x→a

g(x) 6= 0, then lim
x→a

(
f(x)
g(x)

)
=

lim
x→a

f(x)
lim
x→a

g(x) = L

M
.

Theorem 1.10 Let functions f : y = f(x) and g: y = g(x) be given. Let
lim
x→a

f(x) = 0 and the function g be bounded. Then lim
x→a

(f(x) · g(x)) = 0.

Theorem 1.11 Let functions f : y = f(x) and g: y = g(x) be given. Then:

(1) if lim
x→a

f(x) =∞, then lim
x→a

(−f(x)) = −∞,

(2) if lim
x→a

f(x) = −∞, then lim
x→a

(−f(x)) =∞,

(3) if lim
x→a

f(x) = −∞ or lim
x→a

(−f(x)) =∞, then lim
x→a
|f(x)| =∞,

(4) if lim
x→a

f(x) =∞ and the set R(g) (range of the function g) is bounded
from below, then lim

x→a
(f(x) + g(x)) =∞,

(5) if f(x) > 0 and lim
x→a

f(x) = 0, then lim
x→a

1
f(x) =∞,

(6) if lim
x→a
|f(x)| =∞, then lim

x→a

1
f(x) = 0.



45 1.4. LIMIT OF FUNCTION

The basic formulas for calculating limits: 6

(1) lim
x→0

sin x
x

= 1
[

0
0

]
(2) lim

x→0

ex − 1
x

= 1
[

0
0

]
(3) lim

x→∞

(
1 + 1

x

)x
= e [1+∞]

(4) lim
x→−∞

(
1 + 1

x

)x
= e [1−∞]

(5) lim
x→0

1
x

= does not exist
[

1
0

]
(6) lim

x→0−
1
x

= −∞
[

1
0−
]

(7) lim
x→0+

1
x

=∞
[

1
0+

]
(8) lim

x→∞
ax =∞, for a > 1 [a∞]

(9) lim
x→∞

ax = 1, for a = 1 [a∞]

(10) lim
x→∞

ax = 0, for a ∈ (0, 1) [a∞]

(11) lim
x→−∞

ax = 0, for a > 1 [a−∞]

(12) lim
x→−∞

ax = 1, for a = 1 [a−∞]

(13) lim
x→−∞

ax =∞, for a ∈ (0, 1) [a−∞]

(14) lim
x→∞

ex =∞ [e∞]

(15) lim
x→−∞

ex = 0 [e−∞]

(16) lim
x→0+

ln x = −∞ [ln 0]

(17) lim
x→∞

ln x =∞ [ln∞]

6In square brackets is written the type of the limit.
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(18) lim
x→∞

xn =∞, for n ∈ N [∞n]

(19) lim
x→−∞

xn =∞, for n ∈ N, n even [(−∞)n]

(20) lim
x→−∞

xn = −∞, for n ∈ N, n odd [(−∞)n]

(21) lim
x→±∞

1
xn

= 0, for n ∈ N
[

1
(±∞)n

]
(22) lim

x→0

1
xn

=∞, for n ∈ N, n even
[

1
(0)n

]
(23) lim

x→0

1
xn

= does not exist, for n ∈ N, n odd
[

1
(0)n

]
(24) lim

x→0−
1
xn

= −∞, for n ∈ N, n odd
[

1
(0−)n

]
(25) lim

x→0+

1
xn

=∞, for n ∈ N, n odd
[

1
(0+)n

]
(26) lim

x→(π2 )−
tg x =∞

[
tg π

2

]

(27) lim
x→(π2 )+

tg x = −∞
[
tg π

2

]
(28) lim

x→0−
cotg x = −∞ [cotg 0]

(29) lim
x→0+

cotg x =∞ [cotg 0]

(30) lim
x→∞

arctg x = π

2 [arctg∞]

(31) lim
x→−∞

arctg x = −π2 [arctg −∞]

(32) lim
x→∞

arccotg x = 0 [arccotg∞]

(33) lim
x→−∞

arccotg x = π [arccotg −∞]

(34) lim
x→±∞

sin x = does not exist [sin±∞]

(35) lim
x→±∞

cosx = does not exist [cos±∞]
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Remark 1.12 When calculating the limit of the function lim
x→a

f(x) we can
get the following results:

(1) lim
x→a

f(x) = b, b ∈ R – i. e. there exists the real limit b of the function
f(x) (bounded limit),

(2) lim
x→a

f(x) = ±∞ – i. e. there exists infinite limit of function, but rather
we say that the limit is infinity, the proper thing is to say that the
function “diverges” or “grows without bound”. It is said the limit of
f(x) as x approaches a is infinity (negative infinity) (unbounded limit).

(3) The limit lim
x→a

f(x) does not exist, but exist one-side limits, such that
the following property holds: lim

x→a−
f(x) = L and lim

x→a+
f(x) = M and

L 6= M .

(4) The limit does not make sense (is not defined), because the function
f(x) is not defined in the neighbourhood of the point a, the neighbour-
hood on the right, or the neighbourhood on the left side of the point
a, respectively.

Definition 1.22 Let the function f be defined in some neighbourhood of
the point a ∈ I ⊆ D(f). It is said that a function f is continuous at the
point a, if the following property holds: lim

x→a
f(x) = f(a), i. e. (∀ε > 0)(∃δ >

0)(∀x ∈ I : |x − a| < δ)(|f(x) − f(a)| < ε). It is said that a function f is
continuous at the point a from the right, if lim

x→a+
f(x) = f(a). It is said that

a function f is continuous at the point a from the left, if lim
x→a−

f(x) = f(a).
Therefore a function f is said to be continuous at the point a if it is both

defined at a and its value at a equals to the limit of f as x approaches a.

Definition 1.23 A function f is continuous if it is continuous at each point
of the domain of the function f . The function f is continuous on set I ⊆
D(f), if it is continuous at each point of the set I.

Definition 1.24 It is said that a function f is continuous on an open interval
(a, b), if it is continuous at each point of this interval. It is said that a function
f is continuous on a closed interval 〈a, b〉, if it is continuous at each point of
this interval (a, b) and, moreover, is continuous at the point a from the right
and continuous at the point b from the left.
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Remark 1.13 A function f is continuous at the point a if and only if the
limit of f(x) as x approaches a exists and is equal to f(a). If f : M −→ N
is a function between metric spaces M and N , then it is equivalent that f
transforms every sequence in M which converges towards a into a sequence
in N which converges towards f(a).

Remark 1.14 If N is a normed vector space, then the limit operation is
linear in the following sense: if the limit of f(x) as x approaches a is L and
the limit of g(x) as x approaches a is M , then the limit of f(x) + g(x) as x
approaches a is L+M . If α is a scalar from the base field, then the limit of
α · f(x) as x approaches a is α · L.

Theorem 1.12 If a function f is continuous at a point a from the right and
also from the left, then the function f is continuous at the point a.

Theorem 1.13 Let functions f : y = f(x) and g: y = g(x) be continuous
at the point a ∈ D(f) and let α ∈ R. Then the functions f + g, f − g, α · f ,
f · g, |f | are also continuous at the point a. If it is true, that g(a) 6= 0, then
the function f

g
is continuous at the point a.

Theorem 1.14 Let a function f : y = f(x) be continuous at the point a and
a function g: y = g(x) be continuous at the point f(a), then the function
y = f(g(x)) is continuous at the point a.

Theorem 1.15 Each elementary function is continuous on its domain of
definition.

Theorem 1.16 Let a function f : y = f(x) be continuous on a closed inter-
val 〈a, b〉. Then the function f attains its minimum and maximum at interval
〈a, b〉 and the function f attains every value between the minimum and the
maximum.

Theorem 1.17 Let a function f y = f(x) be continuous on a closed interval
〈a, b〉 and let f(a) · f(b) < 0. Then there exists a point c ∈ (a, b) such that
f(c) = 0.

Remark 1.15 If lim
x→a

f(x) = L, then one of the following statements is true:

(1) If f(a) = L, then the function f is continuous at the point a.
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(2) If f(a) 6= L, then the function f is not continuous at the point a, but
the function f is defined at the point a.

(3) If exists lim
x→a

f(x) = L, but f(a) is not defined, then the function f is
not continuous at the point a and also the function f is not defined at
the point a.

Remark 1.16 For infinite limits are used the following rules:

(1) L+∞ =∞ for L 6= −∞,

(2) L · ∞ =∞ if L > 0,

(3) L · ∞ = −∞ if L < 0,

(4) L

∞
= 0 for L 6= ±∞.

1.5 The Derivative
Definition 1.25 Let a function f : y = f(x) be given and defined in the
neighbourhood of the point x0 ∈ D(f). Derivative of the function f at the
point x0 is the real number:

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

. (1.1)

resp.
f ′(x0) = lim

h→0

f(x0 + h)− f(x0)
h

. (1.2)

Definition 1.26 We say that a function f : y = f(x) has at the point x0 ∈ R
left-hand derivation if it is defined in the same left neighbourhood of the point
x0 ∈ D(f) and exists the limit:

f ′−(x0) = lim
x→x−0

f(x)− f(x0)
x− x0

(1.3)

resp.
f ′−(x0) = lim

h→0−
f(x0 + h)− f(x0)

h
(1.4)
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We say that the function f : y = f(x) has at the point x0 ∈ R right-hand
derivation if it is defined in the same right neighbourhood of the point x0 ∈
D(f) and exists the limit:

f ′+(x0) = lim
x→x+

0

f(x)− f(x0)
x− x0

(1.5)

resp.

f ′+(x0) = lim
h→0+

f(x0 + h)− f(x0)
h

(1.6)

Remark 1.17 We also usually use the terms: one-sided derivative, left deriva-
tive, right derivative, left-hand derivative, right-hand derivative, one-sided
limit.

Theorem 1.18 If a function f has derivative at a point x0, then the function
f is continuous at this point.

Theorem 1.19 Let a function f : y = f(x) be given and the point x0 ∈ D(f)
be an internal point of the domain of the function f . The function f has
at the point x0 derivative f ′(x0) if and only if the function f has at the
point x0 left derivative f ′−(x0), right derivative f ′+(x0) and holds equality:
f ′−(x0) = f ′+(x0).

Theorem 1.20 Let a function f : y = f(x) and a point T = [x0, y0], where
x0 ∈ D(f), y0 ∈ H(f) and y0 = f(x0) be given. If there exists derivative of
the function f at the point x0 (f ′(x0)), then the tangent line (tangent) t to
the graph of the function f at the point T has the equation:

t : y − y0 = f ′(x0) · (x− x0). (1.7)

Theorem 1.21 Let a function f : y = f(x) and a point T = [x0, y0], where
x0 ∈ D(f), y0 ∈ H(f) and y0 = f(x0) be given. If there exists derivative of
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the function f at the point x0 (f ′(x0)) and f ′(x0) 6= 0, then the normal line
n to the graph of the function f at the point T has the equation: 7

n : y − y0 = −1
f ′(x0) · (x− x0). (1.8)

Theorem 1.22 (Fundamental Differentiation Rules) Let functions f : y =
f(x) and g: y = g(x) have derivatives f ′(x0) and g′(x0) at the point x0 . Let
c ∈ R. Then holds:

(1) (c · f(x0))′ = c · f ′(x0),

(2) (f(x0) + g(x0))′ = f ′(x0) + g′(x0),

(3) (f(x0)− g(x0))′ = f ′(x0)− g′(x0),

(4) (f(x0) · g(x0))′ = f ′(x0) · g(x0) + f(x0) · g′(x0),

(5)
(
f(x0)
g(x0)

)′
= f ′(x0) · g(x0)− f(x0) · g′(x0)

g2(x0) .

Theorem 1.23 (The Derivative of a Composite Function or Chain Rule)
Let a composite function h: y = f

(
g(x)

)
be defined on an interval (a, b)

and x0 ∈ (a, b). Let a function g has derivation g′(x0) at the point x0 and
a function f has derivation f ′(z0) at the point z0 = g(x0). Then the function
h has derivation h′(x0) = f ′(z0) · g′(x0) at the point x0.

Fundamental Formulas for Differentiation:

(1) (c)′ = 0, where c is real constant c ∈ R,

(2) (x)′ = 1,

(3) (xn)′ = n · xn−1, for n ∈ R,
7Normal line to a curve: The line perpendicular to the tangent line to the curve at the

point x0 of tangency is called the normal line to the curve at that point x0. The slopes of
perpendicular lines have product −1, so if the equation of the curve is y = f(x) then the
slope of the normal line is −1

f ′(x0) .



CHAPTER 1. REAL FUNCTION 52

(4) (sin x)′ = cosx, for x ∈ R,

(5) (cosx)′ = − sin x, for x ∈ R,

(6) (tg x)′ = 1
cos2 x

, for x ∈ R− { (2k+1)π
2 ; k ∈ Z},

(7) (cotg x)′ = −1
sin2 x

, for x ∈ R− {kπ; k ∈ Z},

(8) (arcsin x)′ = 1√
1− x2

, for x ∈ (−1, 1),

(9) (arccosx)′ = −1√
1− x2

, for x ∈ (−1, 1),

(10) (arctg x)′ = 1
1 + x2 , for x ∈ R,

(11) (arccotg x)′ = −1
1 + x2 , for x ∈ R,

(12) (ln x)′ = 1
x
, for x ∈ (0,∞),

(13) (loga x)′ = 1
x · ln a , where a > 0 and a 6= 1, for x ∈ (0,∞),

(14) (ex)′ = ex, for x ∈ R,

(15) (ax)′ = ax · ln a, where a > 0 and a 6= 1, for x ∈ R.

We show how to make derivative of the function that has the form y =
f(x)g(x), where f(x) > 0 for all x ∈ D(f).

y′ =
(
f(x)g(x)

)′
=
(

eln(f(x)g(x))
)′

=
(
eg(x)·ln f(x)

)′
=
(
eg(x)·ln f(x)

)
·
[
g(x)·ln f(x)

]′
=

=
(
f(x)g(x)

)
·
[
g′(x) · ln f(x) + g(x) · (ln f(x))′

]
=

=
(
f(x)g(x)

)
·
[
g′(x) · ln f(x) + g(x) · 1

f(x) · f
′(x)

]
.
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We got additional differentiation formula of the form:(
f(x)g(x)

)′
= f(x)g(x) ·

[
g′(x) · ln f(x) + g(x)

f(x) · f
′(x)

]
. (1.9)

Theorem 1.24 Let f : y = f(x) be given and 〈a, b〉 ⊆ D(f). Suppose f has
in an internal point c of the interval 〈a, b〉 the greatest or the smallest value,
respectively. If the function f has the first derivative at the point c, then
f ′(c) = 0.

Theorem 1.25 (Rolle’s Theorem) Let a function f : y = f(x) be continuous
on a closed interval 〈a, b〉 and has the first derivative (f be differentiable) on
the open interval (a, b), and f(a) = f(b). Then there exists at least one point
ξ in the open interval (a, b) for which f ′(ξ) = 0.

Remark 1.18 The tangent to a graph of the function f , where the derivative
is “hidden”, is parallel to the x-axis, and also with the straight line joining
the two “end” points (a, f(a)) and (b, f(b)) on a curve on the graph of the
function f . Thus Rolle’s theorem claims the existence of a point at which
the tangent to the graph is parallel to the given horizontal straight line.

Theorem 1.26 (Mean Value Theorem, Lagrange’s Theorem) Let a function
f : y = f(x) be continuous on a closed interval 〈a, b〉 and has the first deriva-
tive (f be differentiable) on the open interval (a, b). Then there exists at
least one point ξ in the open interval (a, b) for which

f ′(ξ) = f(b)− f(a)
b− a

.

Remark 1.19 The Mean Value Theorem (MVT) claims the existence of a
point at which the tangent is parallel to the straight line joining (a, f(a)) and
(b, f(b)). Rolle’s theorem is clearly a particular case of the MVT in which f
satisfies an additional condition: f(a) = f(b).

Theorem 1.27 (Cauchy’s Theorem) Let functions f : y = f(x) and g: y =
g(x) be continuous on a closed interval 〈a, b〉 and have the first derivative
(f , g be differentiable) on an open interval (a, b). Suppose g′(x) 6= 0 for
∀x ∈ (a, b). Then there exists at least one point ξ in the open interval (a, b),
such that

f ′(ξ)
g′(ξ) = f(b)− f(a)

g(b)− g(a) .
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Theorem 1.28 (L’Hospital’s rule) Let functions f : y = f(x) and g: y =
g(x) have the derivatives over the neighbourhood of the point a ∈ R∪{±∞}.
Suppose lim

x→a
f(x) = lim

x→a
g(x) = 0 or lim

x→a
|g(x)| = +∞. If lim

x→a
f ′(x)
g′(x) has a finite

value or if the limit is ±∞, then exists also the limit lim
x→a

f(x)
g(x) and holds:

lim
x→a

f(x)
g(x) = lim

x→a

f ′(x)
g′(x) .

Remark 1.20 L’Hospital’s rule is also called Bernoulli’s rule, uses deriva-
tives to help evaluate limits involving the indeterminate forms. L’Hospital’s
rule tells us that if we have an indeterminate form 0

0 or ±∞±∞ all we need to
do is differentiate the numerator and differentiate the denominator and then
take the limit.

Theorem 1.29 Let a function f : y = f(x) be continuous on an interval I
and has a derivative at all internal points of the interval I. Then:

(1) If the function f is on the interval I non-decreasing, then f ′(x) = 0 for
each inner point of the interval I.

(2) If the function f is on the interval I non-increasing, then f ′(x) 5 0 for
each inner point of the interval I.

(3) If the function f is on the interval I increasing, then f ′(x) > 0 for each
inner point of the interval I and f ′ is nonzero on each open subinterval
of the interval I.

(4) If the function f is on the interval I decreasing, then f ′(x) < 0 for each
inner point of the interval I and f ′ is nonzero on each open subinterval
of the interval I.

Theorem 1.30 Let a function f : y = f(x) be continuous on an interval I
and has a derivative at all internal points of an interval I. Then:

(1) if f ′(x) > 0 for each inner point of the interval I, then the function f
is increasing on the interval I,

(2) if f ′(x) < 0 for each inner point of the interval I, then the function f
is decreasing on the interval I,
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(3) if f ′(x) = 0 for each inner point of the interval I, then the function f
is non-decreasing on the interval I,

(4) if f ′(x) 5 0 for each inner point of the interval I, then the function f
is non-increasing on the interval I.

Definition 1.27 We say that a function f : y = f(x) has in the inner point
x0 ∈ I, where I ⊆ D(f) the local maximum, if there exists a neighbourhood
of the point x0, such that for all points of given neighbourhood the following
applies: f(x) 5 f(x0).

We say that a function f : y = f(x) has in the inner point x0 ∈ I, where
I ⊆ D(f) the local minimum, if there exists a neighbourhood of the point
x0, such that for all points of given neighbourhood the following applies:
f(x) = f(x0).

We say that a function f : y = f(x) has in the inner point x0 ∈ I, where
I ⊆ D(f) the strictly local maximum, if there exists a neighbourhood of
the point x0, such that for all points of given neighbourhood the following
applies: f(x) < f(x0).

We say that a function f : y = f(x) has in the inner point x0 ∈ I, where
I ⊆ D(f) the strictly local minimum, if there exists a neighbourhood of
the point x0, such that for all points of given neighbourhood the following
applies: f(x) > f(x0).

A function f has an absolute maximum at a point x0 ∈ D(f), if f(x0) =
f(x) for all x in the domain of the function f .

A function f has an absolute minimum at a point x0 ∈ D(f), if f(x0) 5
f(x) for all x in the domain of the function f .

Together, the absolute minimum and the absolute maximum are known
as the absolute extrema of the function f .

The point x0 is called the stationary point or the turning point of the
function f : y = f(x), if there exists f ′(x0) and holds: f ′(x0) = 0.8

Theorem 1.31 Let f ′(x0) exists. If the function f has local extrema at the
point x0, then f ′(x0) = 0.9

8Maxima and minima are points where a function reaches the highest or the lowest
value, respectively. There are two kinds of extrema: global and local (absolute and rela-
tive), respectively.

9Condition f ′(x0) = 0 is only a necessary condition for the existence of local extremum.
From this condition does not automatically follow that the function f has at the point x0
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Theorem 1.32 (Extreme Value Theorem) If a function f is a continuous
function on the closed interval 〈a, b〉, then the function f attains both an
absolute maximum and an absolute minimum on the closed interval 〈a, b〉.

Definition 1.28 The function f : y = f(x) is called convex (concave up) on
the interval I ⊆ D(f), if for each set of three points x1, x2, x3 ∈ I, such that
x1 < x2 < x3, the point [x2, f(x2)] lies below or on the straight line, which
is determined by the points [x1, f(x1)] and [x3, f(x3)].

The function f : y = f(x) is called concave (concave down) on the interval
I ⊆ D(f), if for each set of three points x1, x2, x3 ∈ I, such that x1 < x2 < x3,
the point [x2, f(x2)] lies above or on the straight line, which is determined
by the points [x1, f(x1)] and [x3, f(x3)].

The function f : y = f(x) is called strictly convex (purely concave up)
on the interval I ⊆ D(f), if for each set of three points x1, x2, x3 ∈ I, such
that x1 < x2 < x3, the point [x2, f(x2)] lies below the straight line, which is
determined by the points [x1, f(x1)] and [x3, f(x3)].

The function f : y = f(x) is called strictly concave (purely concave down)
on the interval I ⊆ D(f), if for each set of three points x1, x2, x3 ∈ I, such
that x1 < x2 < x3, the point [x2, f(x2)] lies above the straight line, which is
determined by the points [x1, f(x1)] and [x3, f(x3)].

Theorem 1.33 Suppose the function f : y = f(x) has derivative f ′ in all
internal points of the interval I ⊆ D(f). If for each pair of points x0, x1 ∈ I,
such that x0 6= x1, the point [x1, f(x1)] lies above the tangent line to the
graph of the function f at the point T = [x0, f(x0)], then the function f is
strictly convex.

Theorem 1.34 Suppose the function f : y = f(x) has derivative f ′ in all
internal points of the interval I ⊆ D(f). If for each pair of points x0, x1 ∈ I,
such that x0 6= x1, the point [x1, f(x1)] lies below the tangent line to the
graph of the function f at the point T = [x0, f(x0)], then the function f is
strictly concave.

Theorem 1.35 Let a function f : y = f(x) be continuous on an interval I
and the second derivative be defined in all internal points of the interval I.
Then:
local extremum.
The function f can have a local extrema at the points which are not stationary points

of the function f , i. e. even at the points where the function f has no derivative.
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(1) if f ′′(x) > 0 for each inner point of the interval I, then the function f
is strictly convex on the interval I,

(2) if f ′′(x) < 0 for each inner point of the interval I, then the function f
is strictly concave on the interval I,

(3) if f ′′(x) = 0 for each inner point of the interval I, then the function f
is convex on the interval I,

(4) if f ′′(x) 5 0 for each inner point of the interval I, then the function f
is concave on the interval I.

Definition 1.29 Let a function f : y = f(x) be continuous on an interval
I ⊆ D(f). A point x0 ∈ I is called the inflection point (the point of inflection,
theinflexion) of the function f , if the function f is strictly concave (strictly
convex) in some left neighbourhood of the point x0 and is strictly convex
(strictly concave) in some right neighbourhood of the point x0.

Theorem 1.36 Suppose f ′′(x0) is defined. If x0 is the point of inflection of
the function f , then holds f ′′(x0) = 0. 10

Theorem 1.37 Let f ′′(x0) = 0 and f ′′′(x0) 6= 0, then the point x0 is the
point of inflection of the function f .

Theorem 1.38 Suppose that a function f : y = f(x) has the nonzero n-th
derivative f (n)(x0) 6= 0, for n = 2 at an inner point x0 of an interval I ⊆ D(f)
and f ′(x0) = f ′′(x0) = · · · = f (n−2)(x0) = f (n−1)(x0) = 0. Then holds:

(1) If n is an even number and f (n)(x0) > 0, then the function f has the
strictly local minimum at the point x0.

(2) If n is an even number and f (n)(x0) < 0, then the function f has the
strictly local maximum at the point x0.

(3) If n is an odd number, then the function f has a point of inflexion x0.
10Condition f ′′(x0) = 0 is a necessary condition for the existence of an inflection point,

because from this condition does not automatically follows that the point x0 is the inflec-
tion point of the function f .
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Remark 1.21 A global maximum of a function is a point in which the func-
tion takes the largest value on the entire range of the function, while a global
minimum is the point in which the function takes the smallest value on the
range of the function. On the other hand, local extrema are the largest or
smallest values of the function in the small neighbourhood of extrema.

A global extremum is always a local extremum too. It is also possible to
have a function with no extrema.

For each extremum, the slope of the graph is necessarily zero. The graph
must stop rising or decreasing at an extremum, and begin to continue in the
opposite direction. Because of this, extrema are also commonly called sta-
tionary points or turning points. Therefore, the first derivative of a function
is equal to zero at extrema.

However, a slope of zero (f ′(x) = 0) does not guarantee existence of
a maximum or a minimum. It could be a stationary point which is called a
point of inflection (inflection point).

Method to classify a stationary point is called the extremum test, or
the 2nd derivative test. The second derivative of the function tells us the
rate of change of the first derivative. If the second derivative is positive at
the stationary point, then the gradient is increasing and it is a minimum.
Conversely, if the second derivative is negative at that point, then it is a
maximum.

If the second derivative is zero, we have a problem. It could be a point
of inflexion, or it could still be an extremum. We differentiate a function f
until we get, at the (n + 1)-st derivative a non-zero result at the stationary
point. If n is odd, then the stationary point is a true extremum. If the
(n+ 1)-st derivative is positive, it is a minimum; if the (n+ 1)-st derivative
is negative, it is a maximum. If n is even, then the stationary point is the
point of inflection.

Critical points are the points where a function’s derivative is 0 or not
defined, or the endpoints on given closed interval of a function f that is
continuous on that interval.
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1.6 Solved Examples
Example 1.1 Find the domain of the function f defined by

f : y = x+ 3
x2 − 9 + ln (x+ 4)−

√
16− x2, x ∈ R.

Solution:
For this function we have three conditions. In the first summand the denom-
inator must not be zero. In the second summand must be the argument of a
logarithmic function positive and the third summand must have nonnegative
expression under the square root. Formally, it is written as follows: x2− 9 6=
0∧x+ 4 > 0∧ 16−x2 = 0. Resolving these inequalities we get the following
sets: x ∈ R−{−3, 3}∧x ∈ (−4,∞)∧x ∈ 〈−4, 4〉. Intersection of these sets is
the resulting domain of the function f i. e. D(f) = (−4,−3)∪(−3, 3)∪(3, 4〉.
See Figure 1.14.

x0 1 2 3 4 5−1−3−4

Figure 1.14: Domain of the function:f : y = x+3
x2−9 + ln (x+ 4)−

√
16− x2.

√

Example 1.2 Find the domain of the function:

f : y = x+ 3
(x2 − 9) ·

√
16− x2

+ arcsin
(
x+ 2

6

)
, x ∈ R.

Solution:
We will write all conditions that must be satisfied for the function f to be
defined. x2 − 9 6= 0 ∧ −1 5 x+2

6 5 1 ∧ 16 − x2 = 0 ∧ 16 − x2 6= 0. We
rewrite these conditions to the following form: x2 − 9 6= 0 ∧ −6 5 x + 2 ∧
x + 2 5 6 ∧ 16 − x2 > 0. Resolving these inequalities we get the following
sets: x ∈ R−{−3, 3}∧x ∈ 〈−8,∞)∧x ∈ (−∞, 4〉∧x ∈ (−4, 4). Intersection
of these sets is the resulting domain of the function f , i. e. D(f) = (−4,−3)∪
(−3, 3) ∪ (3, 4). See Figure 1.15.

√
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x0 1 2 3 4 5−1−3−4−8

Figure 1.15: Domain of the function:f : y = x+3
(x2−9)·

√
16−x2 + arcsin

(
x+2

6

)
.

Example 1.3 Calculate the derivative of the given functions:

f1 : y = x3 − 2x2 + x

5 + e3 − 1
x4 + 2

5x

f2 : y =
√
x+ 5
√
x− 4√

x
+ x2

3
√
x
− 1

ex

f3 : y = x2 · (3− 2 · ln x) + 2− 3x
x− 1

f4 : y = ln(e− e2x)

f5 : y = arccos
(√

1− x2
)

Solution:
We successively calculate the derivative of the each function:

f ′1 : y′ =
(
x3 − 2x2 + x

5 + e3 − 1
x4 + 2

5x

)′
=

= (x3)′ − 2(x2)′ + 1
5 · x

′ + e3 · (1)′ − (x−4)′ + 2
5 · (x

−1)′ =

= 3x2 − 4x+ 1
5 + e3 · 0− (−4)x−5 + 2

5 · (−1)x−2 =

= 3x2 − 4x+ 1
5 + 4

x5 −
2

5x2

f ′2 : y′ =
(
√
x+ 5
√
x− 4√

x
+ x2

3
√
x
− 1

ex

)′
=

=
(√

x
)′

+
(

5
√
x
)′
−
(

4√
x

)′
+
(
x2

3
√
x

)′
−
( 1

ex
)′

=

=
(
x

1
2
)′

+
(
x

1
5
)′
−
(
4x− 1

2
)′

+
(
x2 · x−

1
3
)′
−
(
e−x

)′
=
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= 1
2x

1
2−1 + 1

5x
1
5−1 − 4

(
−1

2

)
x−

1
2−1 +

(
x

5
3
)′
− e−x (−x)′ =

= 1
2x
− 1

2 + 1
5x
− 4

5 + 2x− 3
2 + 5

3x
2
3 − e−x(−1) =

= 1
2
√
x

+ 1
5 5
√
x4

+ 2
x
√
x

+ 5
3

3
√
x2 + 1

ex

The function f is the sum of two functions g and h, where f : y = g + h.
The function g is the product of two functions x2 and (3− 2 · ln x), and the
function h is the ratio of two functions 2−3x and x−1. We use the product
rule (4) in Theorem 1.22 for g and the quotient rule (5) in Theorem 1.22 for
h to differentiate f as follows:

f ′3 : y′ =
(
x2 · (3− 2 · ln x) + 2− 3x

x− 1

)′
=

=
(
x2 · (3− 2 · ln x)

)′
+
(2− 3x
x− 1

)′
=

= (x2)′·(3−2·ln x)+x2·(3−2·ln x)′+(2− 3x)′(x− 1)− (2− 3x)(x− 1)′
(x− 1)2 =

= 2x · (3− 2 · ln x) + x2 ·
(

0− 2 · 1
x

)
+ (−3)(x− 1)− (2− 3x)(1)

(x− 1)2

We expand and group the results to obtain f ′(x) as follows:

f ′3 : y′ = 4x− 4x · ln x+ 1
(x− 1)2

f ′4 : y′ =
(
ln(e− e2x)

)′
= 1

(e− e2x) ·(e−e2x)′ = 1
(e− e2x) ·(0−e2x(2x)′) =

= −2e2x

(e− e2x)

f ′5 : y′ =
[
arccos

(√
1− x2

)]′
= −1√

1−
(√

1− x2
)2
·
(√

1− x2
)′

=

= −1√
1− (1− x2)

·
(
(1− x2) 1

2
)′

= −1√
x2
· 1

2 · (1− x
2) 1

2−1(1− x2)′ =

= −1
2|x| ·

1√
1− x2

(0− 2x) = ±1√
1− x2

√
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Example 1.4 Calculate the first and the second derivative of the function
f given by

(2x− 3)2

(1− 2x)3 .

Solution:
We use the quotient rule (5) in Theorem 1.22 on the page 51 to differentiate
f as follows:

f ′(x) =
(

(2x− 3)2

(1− 2x)3

)′
= ((2x− 3)2)′ · (1− 2x)3 − (2x− 3)2 · ((1− 2x)3)′

((1− 2x)3)2 =

= 2 · (2x− 3)1 · (2x− 3)′ · (1− 2x)3 − (2x− 3)2 · 3 · (1− 2x)2 · (1− 2x)′
(1− 2x)6 =

= 4 · (2x− 3) · (1− 2x)3 − (2x− 3)2 · (−6) · (1− 2x)2

(1− 2x)6 =

= (1− 2x)2 · [4 · (2x− 3) · (1− 2x) + 6 · (2x− 3)2]
(1− 2x)6 =

= 4 · (2x− 4x2 − 3 + 6x) + 6 · (4x2 − 12x+ 9)
(1− 2x)4 = = 8x2 − 40x+ 42

(1− 2x)4 .

f ′′(x) =
(

8x2 − 40x+ 42
(1− 2x)4

)′
= 32x2 − 224x+ 296

(1− 2x)5 .
√

Example 1.5 Find the derivative of a function f given by

f : y = xlnx.

Solution:
We use the formula (1.9) on the page 53.

f ′ : y′ =
(
xlnx

)′
=
(
xlnx

)
·
[
(ln x)′ · ln x+ ln x

x
(x)′

]
=

=
(
xlnx

)
·
[

1
x
· ln x+ ln x

x
· 1
]

=
(
xlnx

)
·
[

2 ln x
x

]
.

√
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1.7 Unsolved Tasks
1.1 Find the domain of the following functions:

a) f : y = 3− x
4x2 − 1

b) f : y = (5x+ 1) · sin x
2x3 + 3x

c) f : y =
√
x+ x2 −

√
4− x2 + ex − 2x

1−
√

1− x
2

d) f : y = ln
(
x− 1
1 + x

)

e) f : y = x2 − 5x+ 6√
1 + ln x− 1

f) f : y = ln
( 5x

8x2 + 1

)
− ln (1− x)

g) f : y =
√

1− 1
x
−
√

1
x

+ 1− arccos 10x
16 + x2

h) f : y = ln(1− x) · ln(x+ 1)
3x2 + 2

i) f : y = ln [ln(ln x)]
3e3x + 2e2x + ex + 1

j) f : y = ex · arccos(1 + x)
x+
√

3 + 2x

k) f : y = ln (3x− 6) ·
√

4x− x2

l) f : y =

√
(ln x) · arccos (6x− 5)

1 + x2

m) f : y =
√

x2 − 1
2 + 3x+ x2
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n) f : y =

√
log 1

3
(x2 − 2x+ 1)
8 + x3

1.2 Find the first derivative of each of the following functions.

a) f : y = 3x5 − x4

2 + 7x− 6 + 2x3 · ln 2− cos 1

b) f : y = 5
2x3 −

√
3
x

+ 1
3
√

8x
− 4
√
x

c) f : y =
(
1−
√
x
)
· (1 + x)

d) f : y = 1− x2
√
x

e) f : y = x5

5 ·
(

ln x− 1
5

)
− (x− 2)2

x

f) f : y = ex ·
(
x3 − 3x2 + 6x− 6

)
g) f : y = x− cosx · sin x

2

h) f : y = x

2 −
1 + x2

2 · arctg x

i) f : y = ex + 1
ex − 1

j) f : y = ex · x3 · cosx

k) f : y = ln
(2 + x

2− x

)
l) f : y = (2x3 − 4)5

m) f : y = arctg x− 1
x+ 1 − arctg 1

x

n) f : y = − 1√
2
· arcsin

√
2 · x

1 + x2
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1.3 Find the second derivative of each of the following functions.

a) f : y = 4x3 − x4

b) f : y = x2 − 2 ln (x− 1)
2

c) f : y = 2x+ ln(cosx)

d) f : y = x2

x− 1

e) f : y = 7 + x2

3 + x2

f) f : y = x2 + 1
1− x2

g) f : y = x2 · e−x

h) f : y = x+ arctg x

1.4 Write the equation of the tangent t to the function f at the given point
T = [x0, y0]:

a) f : y = x2

x− 1 , ak x0 = 3

b) f : y = arctg x, ak x0 = −1

c) f : y = ln x
x

, ak x0 = e

d) f : y = 2x+ 1
x2 , ak x0 = −2

e) f : y =
√

1− x2, ak x0 = −
√

2
2

Find all points on the graph of y = x3 − 3x where the tangent line is
parallel to the x axis (or the horizontal tangent line).

Find a and b so that the line y = −3x + 4 is tangent to the graph of
y = ax3 + bx at x = 1.
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1.8 Results of Unsolved Tasks
1.1 a) D(f) = (−∞,−2)∪ (−2, 2)∪ (2,∞) b) D(f) = R−{0} c) D(f) =

(−2,−1〉 ∪ (0, 2〉 d) D(f) = (−∞,−1) ∪ (1,∞) e) D(f) = 〈1
e , 1) ∪ (1,∞) f)

D(f) = (0, 1) g) D(f) = (−∞,−8〉 ∪ 〈−2,−1〉 ∪ 〈1, 2〉 ∪ 〈8,∞) h) D(f) =
(−1, 1) i) D(f) = (e,∞) j) D(f) = 〈−3

2 ,−1) ∪ (−1, 0) k) D(f) = (2, 4〉 l)
D(f) = 〈−1

2 , 0〉 m) D(f) = (−∞,−2) ∪ (1,∞) n) D(f) = 〈0, 1) ∪ (1, 2〉

1.2 a) y′ = 15x4 − 2x3 + 6x2 · ln 2 + 7 b) y′ = − 15
2x4 +

√
3

x2 − 1
6x 3√x −

2√
x

c) y′ = 1 − 3
2
√
x − 1

2
√
x
d) y′ = − 1

2x
√
x
− 3

2
√
x e) y′ = x4 · ln x − 1 + 4

x2

f) y′ = x3 · ex g) y′ = sin2 x h) y′ = −x · arctg x i) y′ = −2ex
(ex−1)2 j) y′ =

x2 · ex · (x · cosx+ 3 cosx− x sin x) k) y′ = 4
4−x2 l) y′ = 30x2(2x3 − 4)4 m)

y′ = 2
1+x2 n) y′ = x4−1√

x4+1

1.3 a) y′′ = 12x · (2− x) b) y′′ = (x−1)2−1
(x−1)2 c) y′′ = −1

(cosx)2 d) y′′ = 2
(x−1)3 e)

y′′ = 24 · x2−1
(3+x2)3 f) y′′ = 4 · 3x2+1

(1−x2)3 g) y′′ = (2− 4x+ x2) · e−x h) y′′ = −2x
(x2+1)2

1.4 a) T = [3, 9
2 ], t : 3x−4y+ 9 = 0 b) T = [−1, π4 ], t : 2x−2y+ 2−π = 0

c) T = [e, 1
e ], t : e · y − 1 = 0 d) T = [−2,−3

4 ], t : x + 4y + 5 = 0 e)
T = [−

√
2

2 ,
√

2
2 ], t : x− y +

√
2 = 0



Chapter 2

Approximate Solution of a
Nonlinear Equation

In this chapter we will show some basic numerical methods for solving of
the equation of one real variable f(x) = 0. We show whether the methods
converges to the solution always, or only under certain conditions. We will
insinuate the speed of convergence of these methods.

2.1 Separation of Roots
Let be given a non-linear equation f(x) = 0. We are trying to find such
points c ∈ R, for which applies f(c) = 0. These points c are called the roots
of the equation f(x) = 0. When solving the equation f(x) = 0 we try to
determine how many roots does this equation have and we are determining
intervals in which there is exactly one root of the equation. The process of
finding these intervals is called the separation of the roots of the equation
f(x) = 0. We say that the roots of the equation f(x) = 0 are separated, if
holds:

(1) D(f) = 〈a1, b1〉 ∪ 〈a2, b2〉 ∪ · · · ∪ 〈an−1, bn−1〉 ∪ 〈an, bn〉, 1

(2) (ai, bi) ∩ (aj, bj) = ∅, for i, j ∈ {1, 2, . . . , n}, i 6= j

(3) Each interval 〈ai, bi〉, i ∈ {1, 2, . . . , n} contains not more than one root
of the equation f(x) = 0.

1We assume that bi = ai+1 for i ∈ {1, 2, . . . , n− 1} and ai 5 aj for i < j.

67
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Once we have roots separated, we approximate them by one of the ap-
proximations methods described below. For finding the roots of equations is
useful following theorem.

Theorem 2.1 Let a function f : y = f(x) be given and let 〈a, b〉 ⊆ D(f). If
the function f is continuous on an interval 〈a, b〉 and holds:

f(a) · f(b) < 0, (2.1)

then on the interval 〈a, b〉 is situated at least one root of the equation f(x) =
0.

Remark 2.1 Condition (2.1) in the Theorem 2.1 means that the signs of
functional values at points a and b are opposite. On a given interval 〈a, b〉
can also be more than one root. But if the condition (2.1) in the Theorem
2.1 is not satisfied, then the interval 〈a, b〉 may contain roots of the equation
f(x) = 0.2

To be able to separate the roots of the equation, it is appropriate to exam-
ine the characteristics and properties of functions f and based on these char-
acteristics determine the intervals of separation. For easier to find the roots
we can use the basic properties of the elementary functions, therefore it is
appropriate to modify the equation f(x) = 0 to the form g(x) = h(x), so
that the graphs of the functions g and h are easier to draw. We draw both
graphs of functions g and h into the same coordinate system. Searched roots
of functions f are the points where the graphs of functions g and h intersect.

2.2 Bisection Method
The Bisection method (or the method of the half-partitioning of interval)
is the simplest numerical method for solving non-linear equations. In this
section we describe the algorithm how to find an approximate solution of
non-linear equations using the bisection method.

Let a continuous function f : y = f(x) be given on an interval 〈a, b〉,
which is the interval of separation of the equation f(x) = 0 and it contains
one root c exactly. Our task is to find the root c or find such approximate
ck, which is sufficiently close to the root c.

2For example, the equation x2 = 0 has the root c = 0, but at any interval 〈a, b〉
condition (2.1) can not be satisfied.
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We suppose that on the interval 〈a, b〉 holds: f(a) · f(b) < 0. We denote
this initial interval as the interval 〈a0, b0〉. We divide this interval 〈a0, b0〉 in
a half. We denote its centre as c0. For the middle point from the interval
〈a0, b0〉 holds: c0 = a0+b0

2 . We created two new intervals 〈a0, c0〉 and 〈c0, b0〉.
From these two intervals we choose one in which is the root c. That we can
find out by conditions for endpoints of both intervals. If f(a0)·f(c0) < 0, then
we denote this interval as 〈a1, b1〉, i. e. a1 = a0 and b1 = c0. If f(a0)·f(c0) > 0
and f(c0) · f(b0) < 0, then we denote the interval 〈c0, b0〉 as 〈a1, b1〉, where
a1 = c0 and b1 = b0. If f(a0) ·f(c0) = 0 resp. f(c0) ·f(b0) = 0, then we know,
that f(c0) = 0. We have found the root c = c0 and we end the iterative
process. If we did not found the root c, then the new interval 〈a1, b1〉 will
be devided in two again and we proceed by the same way in marking new
elements and in next decision-making. This procedure creates a sequence of
intervals 〈a0, b0〉, 〈a1, b1〉, 〈a2, b2〉, . . . , 〈ak, bk〉, . . . Each subsequent interval is
obtained dividing the interval 〈ak, bk〉 to half and denoting the middle point
ck = ak+bk

2 , for some k ∈ N. If f(ak) · f(ck) < 0, then we denote this interval
as 〈ak+1, bk+1〉, i. e. bk+1 = ck. If f(ak) · f(ck) > 0 and f(ck) · f(bk) < 0,
then we denote the interval 〈ck, bk〉 as 〈ak+1, bk+1〉, where ak+1 = ck. If
f(ak) · f(ck) = 0 resp. f(ck) · f(bk) = 0, then we know that f(ck) = 0. We
have found the root c = ck and we can end the iterative process. If we did
not found the root c, then we create a new interval 〈ak+1, bk+1〉 of half-length
until its length is less than the number 2 · ε, for given small real number
ε > 0, i. e.3

bk − ak < 2 · ε. (2.2)

Approximate solution of an equation f(x) = 0 corresponds to the value of
the middle point of the last k-th interval:

c ≈ ck = ak + bk
2 . (2.3)

We estimate the error of the obtained solution of our equation. We know that
the root c of the equation f(x) = 0 is inside the interval 〈ak, bk〉. Therefore,
the approximate value ck can be from the exact value c at a distance at most
half of the length of the interval 〈ak, bk〉, i. e. about the value ε. Therefore,
for the estimation of the error of the bisection method applies that the form

3If the real root c lies within the interval 〈a, b〉 and c1 = a+b
2 , then |c− c1| < b−a

2 , i. e.
c1 is the approximate value of the root c with an accuracy b−a

2 .
If for some point x holds f(x− ε) · f(x+ ε) < 0, then |x− c| < ε.
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of the error estimation after the k-th iteration is:

|ck − c| 5
b− a
2k+1 5 ε. (2.4)

The bisection method converges to the root of the equation whenever the
interval 〈a, b〉 contains the root c. If, in the interval are more roots, then this
method finds one of them. The disadvantage of the bisection method is that
this method converges to the root slowly. It is therefore appropriate to use
this method to reduce the length of initial interval, where is the root c, and
then use one of the faster methods. Four iterations of the bisection method
are shown in Figure 2.1.

We can use the Table 2.1 on the page 71, to visualize the process of solving
an equation f(x) = 0 by the bisection method. In this table are entered four
iterative steps of the bisection method.

x

f

0 b = b0

a0 = a

c0

a1

b1

c1
a2

b2

c2
a3

b3

c3

a4

b4

Figure 2.1: Four iteration of bisection method.

We fill the Table 2.1 on the page 71 until the value in the last column will be
less than 2 · ε. Finding the approximate solutions by the bisection method
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Table 2.1: Table for the bisection method.

k ak bk ck |bk − ak|
0 a0 = a b0 = b c0 = a0+b0

2 b0 − a0 sgnf(c0) = sgnf(b0)

1 a1 = a0 b1 = c0 c1 = a1+b1
2 b1 − a1 sgnf(c1) = sgnf(a1)

2 a2 = c1 b2 = b1 c2 = a2+b2
2 b2 − a2 sgnf(c2) = sgnf(a2)

3 a3 = c2 b3 = b2 c3 = a3+b3
2 b3 − a3 sgnf(c3) = sgnf(b3)

4 a4 = a3 b4 = c3 c4 = a4+b4
2 b4 − a4

5 ... ... ... ...

with a given accuracy does not depend on the form of the function f(x). It
can be shown that improving the result on one decimal place requires always
next three to four steps of this method.

2.3 Fixed Point Iteration Method
The fixed point iteration method for solving one nonlinear equation of one
real variable is the application of the general method of successive approxi-
mations, which we describe now.

Definition 2.1 We say that g is a mapping from the set A to the set B (we
write g: A −→ B), if for each element x ∈ A it assigns just one element
y ∈ B using g, such that the following applies: y = g(x).

We are interested in sets which are mapping to themselves and in elements
that are mapping them to themselves.

Definition 2.2 An element x ∈ A is called the fixed point (fixpoint) of the
mapping g: A −→ A, iff

g(x) = x. (2.5)

If the set A = R, then the mapping g: R −→ R is a real function of
one real variable. For example, the quadratic function f : y = x2 has two
fixed points. These are the points at which the graph of f intersects the line
y = x. This is true for points x = 0 and x = 1, or 02 = 0 and 12 = 1.
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We ask whether each mapping has a fixed point and if it does how to find
it. It can be proven that some mappings have a fixed point always, and there
exists a procedure to find the fixed point.

Definition 2.3 Let A ⊂ R be a metric space with metric d. We say that
the mapping g: A −→ A is contractive (contraction) if there exists a real
number α ∈ 〈0, 1), such that for every two points x, y ∈ A holds:

d(g(x), g(y)) 5 α · d(x, y). (2.6)

Number α is called the coefficient of contraction.
Contraction, (narrowing) may be freely interpreted in the way that con-

traction mappings have images (functional values) closer than were their
patterns.

Theorem 2.2 Let A be a complete metric space and let mapping g: A −→
A be contraction. Then there exists exactly one fixed point of mapping g
(denoted by xp), for which the following applies:

xp = lim
n→∞

xn, (2.7)

where {xn}∞n=0 is a sequence of approximations, which is defined as follows:
x0 is any element of a set A and the other members of the sequence are
defined by:

xk+1 = g(xk), k = 0, 1, 2, . . . (2.8)
and, moreover, for all non negative integers n holds:

d(xp, xn) 5 α

1− α · d(xn, xn−1), (2.9)

d(xp, xn) 5 αn

1− α · d(x0, x1), (2.10)

where α is coefficient of the contraction of the mapping g.
The Theorem 2.2 gives us instructions how to find a fixed point of given

mapping g. We choose an arbitrary point x0 ∈ A. The point x0 is called the
initial approximation. Then we calculate the other members of the sequence
according to the relation (2.8) in the Theorem 2.2. This calculation is called
an iterative process, and the k-th member of a sequence {xn}∞n=0 is called the
k-th approximation.
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According to the relation (2.7) in the Theorem 2.2 a fixed point of map-
ping g is the limit of the sequence {xn}∞n=0. Successive approximations are
approaching to the fixed point xp. So if we could perform this iterative pro-
cess indefinitely, we would obtain by this procedure the exact value of the
fixed point xp. In real conditions it is not possible, because after a certain
number of steps we stop the iterative process and we approximate the fixed
point by the last member of the calculated sequence {xn}∞n=0.

When to stop the iterative process depends on the accuracy with which
we have a fixed point xp to calculate. For this we can use the relation (2.9)
or the relation (2.10) in the Theorem 2.2, which bounds the distance of the
n-th approximation from the fixed point xp.

Let us return to solving the equation f(x) = 0, with that we will use
above-mentioned facts. We modify the equation f(x) = 0 to the form:

x = g(x). (2.11)

The function g is called the iteration function. After this modification,
searching for the root c of the equation f(x) = 0 will be the same as finding
a fixed point xp of a function g(x). We choose the initial approximation
c0 ∈ D(g). We calculate the following approximations of the fixed point (or
solve the equation) according to the formula:

ck+1 = g(ck), (2.12)

for k = 1, 2, 3, . . . We create a sequence of approximations {cn}∞n=0, which in
general case does not need to converge. Therefore, we will show when fixed
point iteration method converges to the solution.

Theorem 2.3 Let the function g maps the interval 〈a, b〉 into itself and has
the first derivative of this function on this interval. Then, if there exists a
real number α ∈ 〈0, 1), such that

|g′(x)| 5 α ∀x ∈ 〈a, b〉, (2.13)

then the mapping g(x) is a contraction with coefficient α and there exists a
fixed point xp of a function g in the interval 〈a, b〉 and sequence of approx-
imations obtained by relation (2.12) on the page 73 converges to this fixed
point for any initial approximation x0 ∈ 〈a, b〉. For the error estimates holds:

|ck − xp| 5
α

1− α · |ck − ck−1|, (2.14)
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|ck − xp| 5
αk

1− α · |c0 − c1|, (2.15)

We can use the error estimates (2.14) and (2.15) from the Theorem 2.3
when deciding about termination of the iterative process. However, the ver-
ification of condition (2.13) in the Theorem 2.3 may be in general case com-
plicated. In such case we can use as stopping condition:

|ck − ck−1| < ε, (2.16)

which does not mean that holds: |ck − xp| < ε. It is therefore often used
criterion:

f(ck − ε) · f(ck + ε) < 0. (2.17)

2.4 Newton’s Method
The Newton’s method (also called tangential method) is the method that
approximates the solution of the equation f(x) = 0 using the tangents to the
graph of the function f : y = f(x).

The basic principle of the Newton’s method is the construction of tangents
to the chosen, respectively calculated point. We choose the initial approxi-
mation x0 of the solution c of the equation f(x) = 0. We calculate the value
of the function f(x0). We construct a tangent line t0 to the graph of the
function f at the point [x0, f(x0)]. We denot the intersection of the tangent
line t0 with x-axis as the point x1. The point x1 is a further approximation
of the solution of the equation f(x) = 0. Again we calculate the value of the
function f(x1) and construct a tangent line t1 to the graph of the function f
at the point [x1, f(x1)]. In this way we continue in creation of the sequence of
approximations x0, x1, x2, . . . Let the function f has a first derivative. Then
the equation of the tangent line tk to the graph of the functions f at the point
T = [xk, yk] reads (see 2.2):

tk : y − yk = f ′(xk) · (x− xk). (2.18)
The intersection of the tangent line tk at the point [xk, f(xk)] with x-axis

is computed using the formula:

xk+1 = xk −
f(xk)
f ′(xk)

. (2.19)
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x

f

0 b

a

c0c

t0

Figure 2.2: First iteration of Newton’s method.

The Newton’s method also can be derived using the Taylor formula. Sup-
pose that we have the k-th approximation xk of the root c. Then we can write
the following relation:

f(c) = f(xk) + f ′(xk) · (c− xk) + ER,

where ER is the residue in Taylor’s formula.
If we neglect residue ER and we realize that f(c) = 0 because c is the root

of the equation f(x) = 0, then from the previous equation we can express
approximately the root c as follows:

c
.= xk −

f(xk)
f ′(xk)

,

which corresponds to the approximation xk+1.
From Taylor’s formula we can also derive the error estimates for the k-th

approximation of the root c obtained by Newton’s method. If the function
f on the interval I has the second derivative, where xk ∈ I and c ∈ I, then
the following relations hold:

|c− xk| 5
M2

2 ·m1
· (xk − xk−1)2, |c− xk| 5

M2

2 ·m1
· (c− xk−1)2, (2.20)

where M2 = maxx∈I |f ′′(x)| and m1 = minx∈I |f ′(x)|.
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Based on the Lagrange’s Theorem 1.26 on page 53 between points xk and
c lies such a point ξ, for which holds f ′(ξ) = f(xk)−f(c)

xk−c
. Whereas for the

root c is true f(c) = 0, we have |xk − c| = |f(xk|
|f ′(ξ)| , then for each number m,

0 < m 5 |f ′(ξ)| applies estimate:

|c− xk| 5
|f(xk)|
m

. (2.21)

The best estimation we get for m = m1.
Another way to express the relation of a calculation of the k-th approxi-

mation of the root is to combine knowledge from the theory of fixed point and
Newton’s method. We try to express x from the equation f(x) = 0, which
is the basic principle of the fixed point iteration method. Let us divide this
equation by derivative of a function f . We get the equation in the form f(x)

f ′(x) .
We multiply this equality with −1 and we add x to the both sides of the
equation. Then we get the relation:

x = x− f(x)
f ′(x) ,

which corresponds to Newton’s method and it is a special case of fixed point
iteration method.

The Newton’s method is from by us considered methods for solving non-
linear equations most effective, but it does not always converge. Conver-
gence of the Newton’s method often depends on the choice of the initial
approximation x0. Therefore we describe the conditions that guarantee us
the convergence of Newton’s method.

Theorem 2.4 (Fourier’s condition) Let a function f be continuous on an in-
terval 〈a, b〉 and there be exactly one root c of an equation f(x) = 0 in this
interval. Let the first and the second derivative of the function f be contin-
uous on the interval 〈a, b〉 and let the function do not change sign on this
interval.4 If we choose for the initial approximation a point x0 satisfying:

f(x0) · f ′′(x0) > 0, (2.22)

then the Newton’s method will converge to the root c, where x0 ∈ 〈a, b〉.
4The condition that the first derivative of the function f does not change sign on the

interval 〈a, b〉 means that the function f is growing or decreasing all over the given interval.
The condition that the second derivative of the function f does not change sign throughout
the interval 〈a, b〉 indicates, that the function f is concave up on the interval, or concave
down.
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2.5 Solved Examples
Example 2.1 Solve the given equation by bisection method, perform 8 it-
erations and estimate the error:

x

8 − 2 + ln 3x = 0.

Solution:
Separating the roots () ln(3x) = 2 − x

8 ⇐⇒ g(x) = h(x)) is easy to find the
interval in which lies the root, see Figure 2.3.

x

y

g

h

0 1 2 3 4 5 6

1

2

3

4

−1

−2

c

Figure 2.3: Separating the roots of the equation ln(3x) = 2− x
8 .

Let us denote as the function f the left side of the equation, f : y =
x
8 − 2 + ln 3x. We verify that the root c lies in the interval 〈1, 2〉. The
function f is continuous on the interval 〈1, 2〉 and f(1) · f(2) < 0. Thus the
root c ∈ 〈1, 2〉. We will create the Table 2.2 based on the Table 2.1 on page
71, using which we find approximation of solution c of the given equation.5

5Sign in circles in Tab 2.2 is the sign of the functional value of the function f at those
points. For example, 1,75 	 means that f(1,75) < 0.
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Table 2.2: Solving equation by bisection method.

k ak 	 bk ⊕ ck |bk − ak|
0 1,0 2,0 1,5 	 1,0
1 1,5 2,0 1,75 	 0,5
2 1,75 2,0 1,875 	 0,25
3 1,875 2,0 1,9375 ⊕ 0,125
4 1,875 1,9375 1,90625 	 0,0625
5 1,90625 1,9375 1,921875 	 0,03125
6 1,921875 1,9375 1,9296875 	 0,015625
7 1,9296875 1,9375 1,93359375 	 0,0078125
8 1,93359375 1,9375 1,935546875 ⊕ 0,00390625

Based on the last row in the Table 2.2, we get the approximation of
the solution to the equation c8 = 1,935546875. The error estimate of the
solution reads:

|c8 − c| 5
b− a
2k+1 = 2− 1

28+1 = 1
29

.= 0,001953125.

√

Example 2.2 Solve the given equation by Newton’s method with the accu-
racy ε = 5 · 10−6:

x

8 − 2 + ln 3x = 0.

Solution:
Similarly to the previous example, we see easily that the root of the equation
c ∈ 〈1, 2〉. Let us denote as the function f : y = f(x) the left side of
the equation, f : y = x

8 − 2 + ln 3x. In order to investigate the conditions
for the convergence of Newton’s method we need to know the first and the
second derivative of the function f .

f : y = x

8 − 2 + ln 3x,

f ′ : y′ =
(
x

8 − 2 + ln 3x
)′

= 1
8 + 1

x
,
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f ′′ : y′′ =
(1

8 + 1
x

)′
= − 1

x2 .

The second derivative of the function f is negative (and thus f ′′ does not
change the sign) on the interval 〈1, 2〉. It is true that f(1)·f ′′(1) > 0, therefore
we choose as the initial approximation of the solution the point c0 = 1. We
write the iterative relation whereby we fill a table with approximations of
the solution of our equation.

ck+1 = ck −
f(ck)
f ′(ck)

= ck −
ck
8 − 2 + ln (3ck)

1
8 + 1

ck

.

We create the table:

Table 2.3: Newton’s method for solving of equation.

k ck f(ck − ε) · f(ck + ε)
0 1 —
1 1,690122410 	 · 	 = ⊕
2 1,920801430 	 · 	 = ⊕
3 1,934036886 	 · 	 = ⊕
4 1,934073692 	 · ⊕ = 	

Whereas the stopping criterion has been met (the second column in Ta-
ble 2.3), the approximate solution of our equation for a given accuracy is the
number c4 = 1,934073692. For this solution we will estimate the error.

Holds:
m1 = min

x∈〈1,2〉
|f ′(x)| = 0,625,

|c− c4| 5
|f(c4)|
m1

= 2,8974 · 10−10 < ε.

√

Example 2.3 Separate the roots of the equation x ·
√
x+ 1 = 1, verify that

the conditions of convergence of fixed point iteration method are satisfied.
Make 3 steps of this method and estimate the error of the approximate
solution after the third step.
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Solution:
To separate the roots we can modify our equation to the form:

√
x+ 1 = 1

x
.

x

y

g

h

−1 0 1 2 3 4 5 6

1

2

3

−1

c

Figure 2.4: Separating the roots of equation
√
x+ 1 = 1

x
.

From the graphs of elementary functions that make up the right and left
side of the equation, we can easily guess that the root c lies in the interval
〈1

2 , 1〉, see Figure 2.4. We will verify that the root c is really within that
interval. Let us denote f : y = x ·

√
x+ 1 − 1. Function f is continuous on

interval 〈1
2 , 1〉 and applies that f(1

2) · f(1) = (1
2 ·
√

3
2 − 1) · (

√
2− 1) < 0. We

have shown that c ∈ 〈1
2 , 1〉. Let us now express the function ϕ modifying our

equation to the form x = ϕ(x).

x = 1√
x+ 1

=⇒ ϕ(x) = 1√
x+ 1

for x ∈
〈1

2 , 1
〉

We calculate the first derivative of the function ϕ:

ϕ′(x) =
(

1√
x+ 1

)′
= −1

2 · (x+ 1)− 3
2 = −1

2
√

(x+ 1)3
.
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Function |ϕ′(x)| is a decreasing on the interval 〈1
2 , 1〉. Therefore, we can

bound it:

|ϕ′(x)| =

∣∣∣∣∣∣ −1
2
√

(x+ 1)3

∣∣∣∣∣∣ 5 3
10 < 1 for x ∈

〈1
2 , 1

〉
.

The mapping ϕ is contractive on the interval 〈1
2 , 1〉 and α = 3

10 , so the
iterative method will converge. As an initial approximation we choose the
point c0 = 3

4 and we express iterative relation:

ck+1 = 1√
ck + 1 .

We create a table into which we write the results the above iterative
relation.

Table 2.4: Iterative methods for solving of the equation.

k ck |ck − ck−1|
0 0 —
1 1 1
2 0,7071 0,2929
3 0,7654 0,0583

We still need to estimate the error of our solution. We know the value α
and we use the relation (2.14), which is shown on page 73.

|ck − c| 5
α

1− α · |ck − ck−1|,

|c3 − c| 5
α

1− α · |c3 − c2|,

|c3 − c| 5
1
2

1− 1
2
· 0,0583 = 0,0583.

We got the approximate solution c3 = 0,7654, where the upper bound of the
error of this solution is 0,0583.

√
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2.6 Unsolved Tasks
2.1 Separate the real roots of the given equation and solve the given equa-
tion by bisection method for the specified root. Make n steps of the iterative
method and estimate the upper bound of the error.

a) x5 = 6x2 − 1, where n = 10 and choose the smaller positive root,

b) x5 = 4x4 + 2, where n = 14 and choose the positive root,

c) x4 = 7− 8x, where n = 15 and choose the greatest root,

d) x3 = 2− 4x2, where n = 10 and choose the greater negative root,

e) ex + 2x = 2, where n = 12 and choose the positive root,

f) x2 + ln x = 4, where n = 12 and choose the positive root.

2.2 Separate the real roots of the given equation and solve the given equa-
tion by fixed point iteration method for the specified root with an accuracy
of ε. Estimate the upper bound of the error calculation.

a) x3 − 1 = 12x, where ε = 10−3 and choose the lowest root,

b) x3 − 1 = 12x2, where ε = 10−2 and choose lower root,

c) ln x = 4− 2x, where ε = 10−3 and choose the positive root,

d) e2x − 9 = x, where ε = 10−4 and choose the positive root,

e) 4x3 + 1− x2 = 0, where ε = 10−3 and choose the lowest negative root.

2.3 Separate the real roots of the given equation and solve the given equa-
tion by Newton’s method for the specified root with an accuracy of ε. Esti-
mate the upper bound of the error calculation.

a) x3 + x = 3, where ε = 10−3 and choose the positive root,

b) x4 + 3 = 5x3, where ε = 10−4 and choose the greatest positive root,

c) ln x = x− 2, where ε = 10−4 and choose the greatest negative root,

d) e2x = 8x, where ε = 10−4 and choose the lowest negative root,

e) x5 + 4− x2 = 0, where ε = 10−4 and choose the negative root.
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2.7 Results of Unsolved Tasks
2.1 a) 0,4111328125 ∈ 〈0, 1〉 b) 4,0076904296875 ∈ 〈3, 5〉 c) 0,81881713867188 ∈
〈0, 1〉 d)−0,7900390625 ∈ 〈−1, 0〉 e) 0,314697265625 ∈ 〈0, 1〉 f) 1,841064453125 ∈
〈1, 2〉

2.2 a) −3,505 ∈ 〈−4,−3〉 b) 0,29 ∈ 〈0, 1〉 c) 1,727 ∈ 〈1, 2〉 d) 1,0374 ∈
〈0, 2〉 e) −0,24490799644825 ∈ 〈−1, 0〉

2.3 a) 1,213 ∈ 〈1, 2〉 b) 4,9756 ∈ 〈4, 6〉 c) 3,1462 ∈ 〈3, 4〉 d) 0,17870 ∈
〈0, 1〉 e) −1,2056 ∈ 〈−2, 0〉
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Chapter 3

Approximation of Functions

It is often the case, that the function is not specified by any functional
expression and we know only its functional values in some of its points,
which are often received from different measurements. For such functions
it is difficult to obtain the functional values in other than the given points,
find its derivative, or integrate it. Therefore it is appropriate to replace this
function by another function, which is similar to given function and it has
the functional expression and it is easy to do calculations with it.

The most commonly used in approximation as the polynomial function
(polynomial of the n-th degree), which is defined on the set R. A polynomial
function is easily differentiable and integrable on the set R. The require-
ments on the function, by which we want to approximate the given function
may be various. If we use interpolation for approximation of function, we
demand that approximate function has the same functional values (and/or
derivatives) at selected points as original function. Using the least squares
method is not necessary for approximative function to directly pass through
given points, just that in a certain sense, to be as close as possible to given
points of original function.

3.1 Interpolation
Formulation of the problem: Let the function f be given by n + 1 each
other different points x0, x1, . . . , xn. These points are called nodes (nodes of
interpolation). We denote the function values at those points as y0, y1, . . . , yn,
where y0 = f(x0), y1 = f(x1), y2 = f(x2), . . . , yn = f(xn). Let us find the
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polynomial Pn(x) of degree at most n, such that the node points take the
same functional values as the function f i. e. Pn(xi) = yi for i = 0, 1, 2, . . . , n.

Theorem 3.1 Let nodes [xi, yi] for i = 0, 1, 2, . . . , n be given and xi 6= xj
for i 6= j. Then there exists a polynomial Pn(x) of degree at most n, such
that Pn(xi) = yi for i = 0, 1, 2, . . . , n.

Construction of the interpolation polynomial

Below we describe the construction of a polynomial, which satisfies the
conditions of Theorem 3.1, and is called Lagrange’s interpolating polynomial.

The nodes [xi, yi] for i = 0, 1, 2, . . . , n are given and xi 6= xj for i 6= j. We
construct polynomials pi(x) for i = 0, 1, 2, . . . , n, such that:

pi(xj) =
{

1 for i = j,
0 for i 6= j.

Then the Lagrange’s interpolating polynomial has the form:

Ln(x) = p0(x) · y0 + p1(x) · y1 + p2(x) · y2 + · · ·+ pn−1(x) · yn−1 + pn(x) · yn.

It is easy to see that so defined function Ln(x) satisfies allegation of the
Theorem 3.1. It only remains to show the construction of the polynomial
pi(x) itself.

p0(x) = (x− x1) · (x− x2) · (x− x3) · · · · · (x− xn)
(x0 − x1) · (x0 − x2) · (x0 − x3) · · · · · (x0 − xn) ,

p1(x) = (x− x0) · (x− x2) · (x− x3) · · · · · (x− xn)
(x1 − x0) · (x1 − x2) · (x1 − x3) · · · · · (x1 − xn) ,

p2(x) = (x− x0) · (x− x1) · (x− x3) · · · · · (x− xn)
(x2 − x0) · (x2 − x1) · (x2 − x3) · · · · · (x2 − xn) ,

pn−1(x) = (x− x0) · (x− x1) · · · · · (x− xn−2) · (x− xn)
(xn−1 − x0) · (xn−1 − x1) · · · · · (xn−1 − xn−2) · (xn−1 − xn) ,

pn(x) = (x− x0) · (x− x1) · · · · · (x− xn−2) · (x− xn−1)
(xn − x0) · (xn − x1) · · · · · (xn − xn−2) · (xn − xn−1) .

It is easy to see that these functional expressions satisfy the definition of
the polynomial pi(x) at node points xj for i, j = 0, 1, 2, . . . , n. After substi-
tuting into the expression of the Ln(x) we obtain Lagrange’s interpolating
polynomial:
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Ln(x) =
n∑
j=0

n∏
i=0
i6=j

(x− xi)
(xj − xi)

· yj. (3.1)

In a similar way we can define the Inverse Lagrange’s interpolating poly-
nomial. Let nodes [xi, yi] for i = 0, 1, 2, . . . , n be given and yi 6= yj for i 6= j.
We construct polynomials pi(y):

pi(yj) =
{

1 for i = j,
0 for i 6= j.

Then the Inverse Lagrange’s interpolating polynomial has the form:

LInv
n (y) = p0(y) · x0 + p1(y) · x1 + · · ·+ pn−1(y) · xn−1 + pn(y) · xn.

By similar procedure as in the construction of the Lagrange’s interpolat-
ing polynomial we get for the node points [xi, yi] for i = 0, 1, 2, . . . , n, and
yi 6= yj for i 6= j: LInv

n (y) – Inverse Lagrange’s interpolating polynomial:

LInv
n (y) =

n∑
j=0

n∏
i=0
i6=j

(y − yi)
(yj − yi)

· xj. (3.2)

3.2 The Least Squares Method
In experiments measurements are often carried out several times under the
same conditions, which is contrary to the assumptions of interpolation, re-
quiring that all nodes are different from each other. Also, in measurements
we receive data containing errors. This date is therefore not appropriate to
interpolate as this would propagate these errors. Therefore, if we know at
least a little about the functional relationship (linear, quadratic, logarithmic,
exponential, etc.), we can approximate that function so that from the sup-
posed type of functional dependency (the set of all linear function or the set
of all quadratic functions, etc.) we choose such a function, which is to given
points in a sense, as close as possible.

Formulation of the problem: Let nodes x0, x1, x2, . . . , xn and correspond-
ing function values y0, y1, y2, . . . , yn be given . Let functions ϕ0, ϕ1, . . . , ϕm,
where m < n + 1 be given. Then, from all functions of the form (linear
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combination of functions ϕ0, ϕ1, ϕ2, . . . , ϕm):

fm(x) = a0 · ϕ0(x) + a1 · ϕ1(x) + · · ·+ am · ϕm(x) =
m∑
j=0

aj · ϕj(x)

we are looking for such a function, for which the quadratic error:

g(a0, a1, . . . , am) =
n∑
i=0

(yi − fm(xi))2 (3.3)

obtains the minimum value. Unknown variables a0, a1, . . . , am are from the
set R. The quadratic error g expresses the sum of the squares with a length of
side |yi− fm(xi)|, for i = 0, 1, 2, . . . , n. The function for which is obtains the
minimum is called the best approximation of the experimental data y0, . . . , yn
in a given class of functions in the sense of the least squares method.

Determination of the best approximation:
The points [xi, yi], i = 0, 1, 2, . . . , n and functions ϕj, j = 0, 1, 2, . . . ,m

are given, therefore the quadratic error:

g(a0, a1, . . . , am) =
n∑
i=0

(yi − fm(xi))2 =

=
n∑
i=0

[yi − (a0 · ϕ0(xi) + a1 · ϕ1(xi) + · · ·+ am · ϕm(xi))]2

depends only on the coefficients a0, a1, . . . , am of the function g. From the
differential calculus of functions of several variables we know, that a necessary
condition for the function g(a0, a1, . . . , am) to obtain a minimum, is fulfilment
of the conditions expressed by the following equations:

∂g

∂aj
= ∂

∂aj

[
n∑
i=0

[yi − (a0 · ϕ0(xi) + a1 · ϕ1(xi) + · · ·+ am · ϕm(xi))]2
]

= 0, 1

for j = 0, 1, . . . ,m. After differentiation, we get a system of m + 1 linear
equations:[

n∑
i=0

2 · [yi − (a0 · ϕ0(xi) + a1 · ϕ1(xi) + · · ·+ am · ϕm(xi))] · (−ϕj(xi))
]

= 0,

1 ∂g
∂aj

means g′(aj).
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for j = 0, 1, . . . ,m. We divide all equations by number −2 and we split
them into individual sums. Then we get the following system of m+ 1 linear
equations with m+ 1 unknown variables:[
n∑
i=0

(yi · ϕj(xi))−
n∑
i=0

(a0 · ϕ0(xi) · ϕj(xi))− · · · −
n∑
i=0

(am · ϕm(xi) · ϕj(xi))
]

= 0,

for j = 0, 1, . . . ,m. In each sum we can move the corresponding coefficient
ak in front of the sum and after this modification we receive so-called normal
equations for unknown variables a0, a1, . . . , am:

a0 ·
n∑
i=0

(ϕ0(xi) · ϕj(xi)) + · · ·+ am ·
n∑
i=0

(ϕm(xi) · ϕj(xi)) =
n∑
i=0

(yi · ϕj(xi)) ,

(3.4)
for j = 0, 1, . . . ,m.

In this way we obtain system of m + 1 linear equations with m + 1 un-
knowns a0, a1, . . . , am, which we already know easily to solve.

We will show a special case of approximation by the least squares method
using algebraic polynomials. Let us choose the functions ϕi as: ϕi(x) = xi,
for i = 0, 1, 2, . . . ,m, i. e.

ϕ0(x) = 1, ϕ1(x) = x, ϕ2(x) = x2, . . . , ϕm(x) = xm.

We denote the approximate function fm as polynomial Pm:

Pm(x) = a0 + a1 · x+ a2 · x2 + · · ·+ am · xm. (3.5)

We receive the sums from the system of normal equations:
n∑
i=0

(ϕ0(xi) · ϕ0(xi)) =
n∑
i=0

(ϕ0(xi))2 =
n∑
i=0

(
x0
i

)2
=

n∑
i=0

12 = (n+ 1),

n∑
i=0

(ϕ0(xi) · ϕ1(xi)) =
n∑
i=0

(
x0
i · x1

i

)
=

n∑
i=0

xi,

n∑
i=0

(ϕ0(xi) · ϕ2(xi)) =
n∑
i=0

(
x0
i · x2

i

)
=

n∑
i=0

x2
i ,

...
n∑
i=0

(ϕr(xi) · ϕs(xi)) =
n∑
i=0

(xri · xsi ) =
n∑
i=0

xr+si , r, s ∈ {0, 1, . . . ,m}
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The system of normal equations is in the form:

a0 · (n+ 1) + a1 ·
∑n
i=0 xi + · · ·+ am ·

∑n
i=0 x

m
i = ∑n

i=0 yi

a0 ·
∑n
i=0 xi + a1 ·

∑n
i=0 x

2
i + · · ·+ am ·

∑n
i=0 x

m+1
i = ∑n

i=0 xi · yi

a0 ·
∑n
i=0 x

2
i + a1 ·

∑n
i=0 x

3
i + · · ·+ am ·

∑n
i=0 x

m+2
i = ∑n

i=0 x
2
i · yi

... ...

a0 ·
∑n
i=0 x

m
i + a1 ·

∑n
i=0 x

m+1
i + · · ·+ am ·

∑n
i=0 x

2m
i = ∑n

i=0 x
m
i · yi

For the approximation by linear function (straight line) P1(x) = a0 +a1 ·x
we get system of normal equations in the form:

a0 · (n+ 1) + a1 ·
∑n
i=0 xi = ∑n

i=0 yi

a0 ·
∑n
i=0 xi + a1 ·

∑n
i=0 x

2
i = ∑n

i=0 xi · yi

and for the approximation by quadratic function (parabola) P2(x) = a0 +a1 ·
x+ a2 · x2 we get system of normal equations in the form:

a0 · (n+ 1) + a1 ·
∑n
i=0 xi + a2 ·

∑n
i=0 x

2
i = ∑n

i=0 yi

a0 ·
∑n
i=0 xi + a1 ·

∑n
i=0 x

2
i + a2 ·

∑n
i=0 x

3
i = ∑n

i=0 xi · yi

a0 ·
∑n
i=0 x

2
i + a1 ·

∑n
i=0 x

3
i + a2 ·

∑n
i=0 x

4
i = ∑n

i=0 x
2
i · yi

Besides polynomials the trigonometric functions also are used, if we as-
sume periodic behaviour of the approximated data. For example, we can
choose the functions ϕi as follows (assuming period is 2π):
ϕ0(x) = 1, ϕ1(x) = cos x, ϕ2(x) = sin x, ϕ3(x) = cos 2x, ϕ4(x) = sin 2x, . . .

3.3 Solved Examples
Example 3.1 Write the Lagrange’s interpolating polynomial for the func-
tion f , which is given by node points:
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xi −1 0 1 2
yi 3 2 1 6 .

Solution:
From the assignment we see, that n = 3. The Lagrange’s interpolating
polynomial has the form:

L3(x) =
3∑
j=0

3∏
i=0
i6=j

(x− xi)
(xj − xi)

· yj =

= (x− 0) · (x− 1) · (x− 2)
((−1)− 0) · ((−1)− 1) · ((−1)− 2) · 3+

+(x− (−1)) · (x− 1) · (x− 2)
(0− (−1)) · (0− 1) · (0− 2) · 2+

+(x− (−1)) · (x− 0) · (x− 2)
(1− (−1)) · (1− 0) · (1− 2) · 1+

+(x− (−1)) · (x− 0) · (x− 1)
(2− (−1)) · (2− 0) · (2− 1) · 6 =

= 3x · (x2 − 3x+ 2)
(−1) · (−2) · (−3) + (x2 − 1) · (2x− 4)

1 · (−1) · (−2) +

+x · (x
2 − 1)

3 · 2 · 1 + x · (x2 − x− 2)
2 · 1 · (−1) = x3 − 2x+ 2.

√

Example 3.2 Solve the equation f(x) = 0 using the inverse Lagrange’s
interpolation polynomial if the function f is given by node points:

xi 0 1 3 4
yi 5 3 −1 −2 .

Solution:
To solve the equation f(x) = 0 using the inverse Lagrange interpolating
polynomial, it means to determine the value of this polynomial at point
zero i. e. LInv

n (0).2 From the assignment we see, that n = 3. The inverse
Lagrange’s interpolating polynomial has the form:

LInv
3 (y) =

3∑
j=0

3∏
i=0
i 6=j

(y − yi)
(yj − yi)

· xj =

2We suppose that f(x) = 0 if and only if x = f−1(0) .= LInv.
n (0).
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= (y − 3) · (y − (−1)) · (y − (−2))
(5− 3) · (5− (−1)) · (5− (−2)) · 0+

+(y − 5) · (y − (−1)) · (y − (−2))
(3− 5) · (3− (−1)) · (3− (−2)) · 1+

+ (y − 5) · (y − 3) · (y − (−2))
((−1)− 5) · ((−1)− 3) · ((−1)− (−2)) · 3+

+ (y − 5) · (y − 3) · (y − (−1))
((−2)− 5) · ((−2)− 3) · ((−2)− (−1)) · 4

In this case it is not necessary to know the functional formula of this
polynomial, it is enough to calculate the value of the polynomial at the point
zero, i. e. we calculate:

LInv
3 (0) =

3∑
j=0

3∏
i=0
i 6=j

(0− yi)
(yj − yi)

· xj =

= (0− 3) · (0− (−1)) · (0− (−2))
(5− 3) · (5− (−1)) · (5− (−2)) · 0+

+(0− 5) · (0− (−1)) · (0− (−2))
(3− 5) · (3− (−1)) · (3− (−2)) · 1+

+ (0− 5) · (0− 3) · (0− (−2))
((−1)− 5) · ((−1)− 3) · ((−1)− (−2)) · 3+

+ (0− 5) · (0− 3) · (0− (−1))
((−2)− 5) · ((−2)− 3) · ((−2)− (−1)) · 4 =

= −6
84 · 0 + −10

−40 · 1 + 30
24 · 3 + 15

−35 · 4 = 1
4 + 90

24 −
60
35 = 16

7 = 2,29571.

We get LInv
3 (0) = 2,29571, therefore L3(2,29571) = 0, therefore the solu-

tion of the equation f(x) = 0 is x = 2,29571.
√

Example 3.3 For the values which are given in the table
x 0,1 0,5 0,7 1,2
y 14,61 3,39 2,14 0,47

determine by the least squares method the optimal coefficients a and b if the
function f : y = f(x) is given by y(x) ∼ a

x
+ b · ln(x). Write out a theoretical

and numerical matrix of the system.
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Solution:
The function f2(x) is given by f2(x) = a ·ϕ0(x) + b ·ϕ1(x) = a · 1

x
+ b · ln(x),

where ϕ0(x) = 1
x
and ϕ1(x) = ln(x). The theoretical matrix is:( ∑4

i=1 ϕ0(xi) · ϕ0(xi)
∑4
i=1 ϕ0(xi) · ϕ1(xi)

∑4
i=1 yi · ϕ0(xi)∑4

i=1 ϕ1(xi) · ϕ0(xi)
∑4
i=1 ϕ1(xi) · ϕ1(xi)

∑4
i=1 yi · ϕ1(xi)

)
=

=
 ∑4

i=1

(
1
xi

)2 ∑4
i=1

1
xi
· ln(xi)

∑4
i=1 yi · 1

xi∑4
i=1 ln(xi) · 1

xi

∑4
i=1 (ln(xi))2 ∑4

i=1 yi · ln(xi)


Creation of the calculation table:

Table 3.1: The Least Squares Method for y(x) ∼ a
x

+ b · ln(x).
i xi yi

(
1
xi

)2
(ln(xi))2 1

xi
· ln(xi) yi · 1

xi
yi · ln(xi)

1 1,0 14,61 1,000 0,000 0,000 14,610 0,000
2 0,5 3,39 4,000 0,480 −1,386 6,780 −2,349
3 0,7 2,14 2,041 0,127 −0,509 3,057 −0,763
4 1,2 0,47 0,694 0,033 0,152 0,392 0,086

SUM 3,4 20,16 7,735 0,641 −1, 744 24,839 −3,027

Based on the values in Table 3.1 (last row), we can write the numerical
matrix of the system of normal equations:(

7,735 -1,744 24,839
-1,744 0,641 -3,027

)

The solution of this system of normal equations is a = 10,64007
1,91644 = 5,551985

and b = 19,89885
1,91644 = 10,383214. We can approximate the function f : y = f(x)

by formula:
y(x) ≈ 5,551985

x
+ 10,383214 · ln(x).

√
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3.4 Unsolved Tasks
3.1 Construct the Lagrange interpolating polynomials for the function f(x),
which are given by the following tables:

a) x −1 0 1 2
y 2 −1 2 4 ,

b) x 0,1 0,5 0,7 1,2
y 7,2 3,6 2,4 0,8 ,

c) x −2 0 2 3
y 4 −1 −2 1 ,

d) x −2 1 3
y 5 −3 5 ,

e) x −1 0 2 3 5
y 12 10 0 −4 15 ,

f) x −3 −2 1 3
y 12 0 4 −15 .

3.2 The function f(x) is given by table. Approximate the function f by
linear function g: y = ax+ b by the least squares method.

a) x −1 2 3 5
y 4 4 5 7 ,

b) x −0,1 0,5 0,7 1,2
y 7,2 3,6 2,4 0,8 ,

c) x −1 0 2 3 5
y 6 2 0 −6 −12 .

3.3 The function f(x) is given by the table:
x 0 0,5 1,1 2,0
y −1,75 0,53 0,95 1,25 .

By the least squares method approximate the function f by the function g:
y = a+ b · ex.
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3.5 Results of Unsolved Tasks
3.1 a) L3(x) = −7

6x
3 + 3x2 + 7

6x−1 b) L3(x) = −10
11x

3 + 68
11x

2− 1367
110 x+ 461

55
c) L3(x) = 1

5x
3 + 1

2x
2 − 23

10x − 1 d) L2(x) = 4
3x

2 − 4
3x − 3 e) L4(x) =

1
12x

4 − 5
4x

2 − 19
6 x+ 10 f) L3(x) = −11

12x
3 − 1

3x
2 + 15

4 x+ 3
2

3.2 a) g: y = 0,48x+3,92 b) g: y = −2,89473684210526x+3,21052631578947
c) g: y = −4,99135446685879x+ 6,3700288184438

3.3 g: y = −0,8085 + 0,3231 · ex
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Chapter 4

The Calculation of Definite
Integrals

4.1 Antiderivative
With the concept of derivation we met in section 1.5. In this chapter we will
discuss the inverse process to differentiation of a function. We are looking for
such a function, which will be equal to the derivative of the given function.

Definition 4.1 Let a function f with a domain D(f) ⊆ R be given. A func-
tion F is called an antiderivative of the function f on an interval I ⊆ D(f),
if for all x ∈ I holds: F ′(x) = f(x). We assume that in the end points of the
interval I, the function F has at least one-sided derivatives.

The consequence of the definition of antiderivative of the function f is
the fact that each antiderivative of the function f is the continuous function
F on the interval I, because it has the first derivative on the interval I.

Theorem 4.1 Let a function F : y = F (x) be antiderivative to a function
f : y = f(x) on the interval I ⊆ D(f) ⊆ R and let c ∈ R be a real constant.
Then also the function G = F + c is an antiderivative to the function f on
the interval I.

Theorem 4.2 Let the functions F and G be antiderivatives to a function f
on the interval I ⊆ D(f) ⊆ R. Then the function H = F − G is a constant
function on the interval I.
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4.2 Indefinite Integral
Definition 4.2 The set {F + c : c ∈ R ∧ F ′ = f} is called the indefinite
integral and it is denoted by symbol

∫
f(x) dx = F (x) + c. Finding the

antiderivative to the function f is called integration (integration of the func-
tion f , integrating the function f), the argument x is called the integration
variable and the constant c is called the constant of integration (integration
constant).

Remark 4.1 Following relations are valid:

a)
∫
f ′(x) dx = f(x) + c,

b)
(∫

f(x) dx
)′

= f(x).

Theorem 4.3 Let a function f : y = f(x) be continuous on an interval I ⊆
D(f) ⊆ R. Then for the function f on the interval I exists the antiderivative
F : y = F (x).

4.2.1 Integration Rules

(1)
∫

(α · f(x)) dx = α ·
∫
f(x) dx, for α ∈ R

(2)
∫

(f(x) + g(x)) dx =
∫
f(x) dx+

∫
g(x) dx

(3)
∫

(f(x)− g(x)) dx =
∫
f(x) dx−

∫
g(x) dx

(4)
∫ f ′(x)
f(x) dx = ln |f(x)|+ c, c ∈ R

4.2.2 Integration Formulas

(1)
∫

1 dx = x+ c, c ∈ R

(2)
∫
k dx = k · x+ c, for k, c ∈ R

(3)
∫
xn dx = 1

n+ 1 · x
n+1 + c, for n 6= −1, c ∈ R
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(4)
∫
ax dx = 1

ln a · a
x + c, for a > 0 ∧ a 6= 1, c ∈ R

(5)
∫

ex dx = ex + c, c ∈ R

(6)
∫ 1
x

dx = ln |x|+ c, c ∈ R

(7)
∫

sin x dx = − cosx+ c, c ∈ R

(8)
∫

cosx dx = sin x+ c, c ∈ R

(9)
∫ 1

cos2 x
dx = tg x+ c, c ∈ R

(10)
∫ 1

sin2 x
dx = −cotg x+ c, c ∈ R

(11)
∫ 1√

1− x2
dx = arcsin x+ c, c ∈ R

(12)
∫ 1

1 + x2 dx = arctg x+ c, c ∈ R

(13)
∫ 1

1− x2 dx = 1
2 · ln

∣∣∣∣1 + x

1− x

∣∣∣∣+ c, c ∈ R

(14)
∫ 1√

x2 + a2
dx = ln

∣∣∣x+
√
x2 + a2

∣∣∣+ c, c ∈ R

(15)
∫ 1√

x2 − a2
dx = ln

∣∣∣x+
√
x2 − a2

∣∣∣+ c, c ∈ R

4.2.3 Integration by Parts
As we may notice between the rules for integrating we lack rules for integrat-
ing the product and the division of two functions. Unlike by derivatives, by
integration there does not exist universal rule for integrating such functions.
Integration by parts1 allows us to integrate a product of some functions and
the elementary functions that are not among the formulas for integration.

1It also usually be called per-partes method.
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Theorem 4.4 Let the functions u : y = u(x) and v : y = v(x) have contin-
uous the first derivative on the interval I ⊆ R. Then holds:∫

u(x) · v′(x) dx = u(x) · v(x)−
∫
u′(x) · v(x) dx, (4.1)

∫
u′(x) · v(x) dx = u(x) · v(x)−

∫
u(x) · v′(x) dx. (4.2)

4.2.4 Integration by the Substitution Method
The Substitution method allows us to integrate many composite functions,
the product of some functions and often fraction of functions.

Theorem 4.5 Let a function g : y = g(x) be defined on an opened interval
I = (a; b) ⊆ D(g) ⊆ R with range IH = (c; d) ⊆ H(g) ⊆ R (i. e. g : (a; b) −→
(c; d)). Let the function g be continuous and differentiable. Let a function
F : y = F (x) be antiderivative to a function f : y = f(x), which is defined
on an interval J = IH = (c; d) ⊆ D(f) ⊆ R. Then the function F (g(x)) is
antiderivative to the function f(g(x)) · g′(x) on the interval I = (a; b).

We can formally rewrite Theorem 4.5 into the form:∫
f(g(x)) · g′(x) dx

∣∣∣∣∣ g(x) = t
g′(x) dx = dt

∣∣∣∣∣ =
∫
f(t) dt. (4.3)

4.3 The Definite Integral
Definite integral is one of the base instruments that we can use to calculate
the area of surface (plane figures).

Definition 4.3 Let be given a non-negative and continuous function f :
y = f(x), where f : 〈a; b〉 −→ R, 〈a; b〉 ⊆ D(f) ⊆ R. The partition Dn

of the interval 〈a; b〉 is given, which is given by n separate points Dn =
{x0;x1;x2; . . . ;xn}, where a = x0 < x1 < x2 < · · · < xn−1 < xn = b and
〈a; b〉 = ⋃n

i=1〈xi−1;xi〉. Denote ∆xi = xi−xi−1 the length of the i-th interval
for i = 1, 2, . . . , n. For each positive integer n we can create some partitioning
Dn of the interval 〈a; b〉 and we get a sequence of partitioning {Dn}∞n=1 of
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interval 〈a; b〉. Denote the norm of the partition Dn as a number ||Dn|| =
max{∆x1,∆x2, . . . ,∆xn−1,∆xn}. Assume that the sequence of partitioning
{Dn}∞n=1 is normal (i. e. limx→∞ ||Dn|| = 0). Let ξi be an arbitrary point of
the interval 〈xi−1;xi〉 for i = 1, 2, 3, . . . , n. Denote S(f,Dn) the integral sum
of the function f for partition Dn of the interval 〈a; b〉 and for any choice of
points ξ1; ξ2; . . . ; ξn, where S(f,Dn) = ∑n

i=1 f(ξi) · ∆xi.2 Then if exists the
number

S = lim
n→∞

S(f,Dn) (4.4)

(the limit of a sequence of integral sums of the function f on the interval
〈a; b〉), it is called the definite integral (Riemann integral) of function f on
the interval 〈a; b〉. The definite integral is denoted by the symbol

∫ b
a f(x) dx.3

The number a is called the lower limit and the number b is called the upper
limit of the definite integral.

Definition 4.4 Let a function f be defined and bounded on a closed in-
terval 〈a; b〉. The function f is integrable on the interval 〈a; b〉, if for every
normal sequence {Dn}∞n=1 on the interval 〈a; b〉, the sequence of integral sums
{S(f,Dn)}∞n=1 of the function f for partitioning Dn of the interval 〈a; b〉 and
arbitrary selection ξ1; ξ2; . . . ; ξn for the partition Dn is convergent.

Remark 4.2 If we mark a planar shape – curvilinear trapezoid as a set of
points K = {[x, y] ∈ R2 : a 5 x 5 b ∧ 0 5 y 5 f(x)}, then the surface area
of this region is equal to the real number S, i. e. value of the definite integral∫ b
a f(x) dx.

Theorem 4.6 The function f is integrable on 〈a, b〉 with integral S if and
only if limn→∞ S(f,Dn) = S for every sequence {S(f,Dn)}∞n=1 of Riemann
sums associated with a sequence of partitions {Dn}∞n=1 of 〈a, b〉 such that
||Dn|| −→ 0 as n −→∞.

Remark 4.3 Based on the Theorem 4.6 we can express the definite integral
S as the limit:

S = lim
||Dn||→0

S(f,Dn)

2The set of points {ξ1; ξ2; . . . ; ξn} is called a selection for the partition Dn.
3The summing definition of integral introduced Cauchy for continuous functions and

Riemann for discontinuous functions. Title definite integral introduced Bernoulli and
symbol

∫
is actually the letter S as the first letter of the word sum which used Leibniz,

Bernoulli’s teacher. Therefore, the definite integral is called the Riemann integral or the
Cauchy-Riemann integral.
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Theorem 4.7 (The Newton-Leibniz Formula) Let a function f : y = f(x)
be integrable on a closed interval 〈a, b〉 and let it has on the interval 〈a, b〉
antiderivative F : y = F (x). Then holds:

b∫
a

f(x) dx =
[
F (x)

]b
a

= F (b)− F (a). (4.5)

4.3.1 Properties of Definite Integrals
Theorem 4.8 Suppose that functions f and g are integrable. Then holds:

(1)
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx,

(2)
∫ a

a
f(x) dx = 0,

(3)
∫ b

a
(f(x) + g(x)) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx,

(4)
∫ b

a
α · f(x) dx = α ·

∫ b

a
f(x) dx, where α ∈ R,

(5)
∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx, where c ∈ 〈a, b〉.

Theorem 4.9 (Existence of the Integral) If a function f : y = f(x) is contin-
uous on an interval 〈a, b〉, then the function f is integrable on this interval.

Theorem 4.10 Let a function f : y = f(x) be bounded and has a finite
number of points of discontinuity on an interval 〈a, b〉. Then the function
f : y = f(x) is integrable on the interval 〈a, b〉.

Theorem 4.11 Let a function f : y = k be the constant function (k ∈ R).
Then holds:

b∫
a

k dx = k · (b− a).
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Theorem 4.12 Let a function f : y = f(x) be integrable and non-negative
on an interval 〈a, b〉. Then holds:

b∫
a

f(x) dx = 0.

Theorem 4.13 Let functions f : y = f(x) and g : y = g(x) be integrable
on an interval 〈a, b〉. Let f(x) 5 g(x) for all values x ∈ 〈a, b〉. Then holds:

b∫
a

f(x) dx 5
b∫
a

g(x) dx.

Theorem 4.14 (Integration by Parts) Let functions u : y = u(x) and v :
y = v(x) be continuously differentiable on a closed interval 〈a, b〉. Then
holds:

b∫
a

u(x) · v′(x) dx =
[
u(x) · v(x)

]b
a
−

b∫
a

u′(x) · v(x) dx. (4.6)

Theorem 4.15 (Substitution) Let a function f : y = f(x) be continuous on
a closed interval 〈a, b〉. Let a function g : y = g(x) has a continuous the
first derivative on bounded and the closed interval 〈c, d〉, while it maps the
interval 〈c, d〉 to the interval 〈a, b〉. Then holds:

b∫
a

f(x) dx =
d∫
c

f(g(t)) · g′(t) dt, (4.7)

where g(c) = a and g(d) = b.

4.3.2 Aplication of Definite Integrals
Definition 4.5 Let functions f : 〈a, b〉 −→ R and g : 〈a, b〉 −→ R be
continuous and let for each x ∈ 〈a, b〉: f(x) 5 g(x). Then the set D =
{[x, y] ∈ R2 : a 5 x 5 b ∧ f(x) 5 y 5 g(x)} is called the elemental area
(region) in R2 with respect to the x axis ox.
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Definition 4.6 Let functions φ : 〈c, d〉 −→ R and ψ : 〈c, d〉 −→ R be
continuous and for each y ∈ 〈c, d〉 is φ(y) 5 ψ(y). Then the set H = {[x, y] ∈
R2 : c 5 y 5 d ∧ φ(y) 5 x 5 ψ(y)} is called the elemental area (region) in
R2 with respect to the y axis oy.

Theorem 4.16 A surface area of the elemental area D from Definition 4.5
is calculated by the formula:

P =
b∫
a

(
g(x)− f(x)

)
dx. (4.8)

Theorem 4.17 A surface area of the elemental area H from Definition 4.6
is calculated by the formula:

P =
d∫
c

(ψ(y)− φ(y)) dy. (4.9)

Theorem 4.18 If the curve γ is a graph of the function f : 〈a, b〉 −→ R,
having a continuous the first derivative, then for its length d holds formula:

d =
b∫
a

√
1 + (f ′(x))2 dx. (4.10)

Theorem 4.19 Let a function f : y = f(x) be continuous and non-negative
on a closed interval 〈a, b〉, which creates in a plane curvilinear trapezoid L
over the interval 〈a, b〉. By rotation of curvilinear trapezium L in the space
R3 with axes ox, oy, and oz around an axis ox arises rotating shape whose
volume V is computed using the volume formula:

V = lim
x→∞

n∑
i=1

π · f 2(ξi) ·∆xi = π ·
∫ b

a
f 2(x) dx. (4.11)
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Theorem 4.20 Let a function f : y = f(x) be continuous, differentiable and
non-negative on the closed interval 〈a, b〉, which creates in a plane curvilinear
trapezoid L over the interval 〈a, b〉. By rotation of curvilinear trapezium L
in the space R3 with axes ox, oy, and oz about the axis ox arises rotating
shape whose surface area of rotating area S is computed using the formula:

S = 2 · π ·
b∫
a

f(x) ·
√

1 + (f ′(x))2 dx. (4.12)

4.4 Numerical Integration
As we already know from previous chapters, not every function must have
a primitive function (antiderivative), or to find the primitive function can be
very complicated. Unfamiliarity of primitive function does not allow us to
use the Newton-Leibniz formula to calculate the definite integral. We can
still use the definition of the definite integral, but its use is not very practical
for calculations. It is therefore appropriate to suitably adjust the definition
of the definite integral so we can approximate it more easily. For this we use
the so-called Newton-Cotes formulas.

4.4.1 Newton-Cotes Formulas
We want to calculate the definite integral of a function f : y = f(x) on
an interval 〈a, b〉:

b∫
a

f(x) dx. (4.13)

We obtain the Newton-Cotes quadrature formula (quadrature formula) by
integrating the interpolating polynomial with equidistant nodes, which ap-
proximates the integrand f (the expression to be integrated). These formulas
can be divided into two basic groups:

a) closed formulas, where we take the interval endpoints for quadrature
nodes,
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b) open formulas, where we do not take the endpoints for quadrature
nodes, but the nodes are symmetrical according to the centre of the
interval.

In this chapter we will discuss one open formula (rectangular method) and
two closed formulas (trapezoidal method and Simpson’s method). The differ-
ence between these methods is by which polynomial function is the integrand
f approximated. When we apply the rectangular method we use the polyno-
mial of the zero degree (constant function). When we apply the trapezoidal
method we use the polynomial of the first degree (linear function – straight
line), and when we apply the Simpson’s method we use the polynomial of
the second degree (quadratic function – a parabola).

We know that the definite integral of a positive function f on the interval
〈a, b〉 corresponds to the surface area of the plane, which is surrounded, from
above by the function f , from below by the x axis ox and on the both sides by
the straight lines x = a and x = b. With the rectangular method we calculate
the area of the rectangles that approximate that area. With the trapezoidal
method we calculate the surface area of trapezoids that approximate the
given area, and with Simpson’s method we calculate surface of areas that are
bound from above by parabola.

Let the integral (4.13) be given. We divide the interval 〈a, b〉 into the n
equal parts, using n+ 1 nodal points x0, x1, x2, . . . , xn. We say the partition
Dn = {x0, x1, x2, . . . , xn} is regular. Let h ∈ R, for which holds:

h = (b− a)
n

. (4.14)

Then we can express the nodal points using the constant h as follows:

xi+1 = xi + h, (4.15)

where i = 0, 1, 2, . . . , n− 1 and x0 = a, xn = b.

Remark 4.4 As explained in Definition 4.3 , the choice of ξi can be anything
within the interval 〈xi−1, xi〉. Depending on our choices, we can have a vast
variety of sums. However, there are three main sums that relate and are
usable to our cases:

(1) Left Riemann Sum: Sleft(f,Dn) =
n∑
i=1

f(xi−1) ·∆i, we choice the left
endpoint ξi = xi−1 (the left endpoint sum),
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(2) Right Riemann Sum: Sright(f,Dn) =
n∑
i=1

f(xi) ·∆i, we choice the right
endpoint ξi = xi (the right endpoint sum),

(3) Middle Riemann Sum: Smid(f,Dn) =
n∑
i=1

f(ξi) ·∆i, we choice the mid-

point ξi = xi−1+xi
2 (the midpoint sum).

4.4.2 Rectangular Method
Let the integral (4.13) on page 105 be given. We approximate the function
f by the constant function fi: y = f

(
xi+xi+1

2

)
for i = 0, 1, 2, . . . , n − 1 at

each interval 〈xi, xi+1〉, for i = 0, 1, 2, . . . , n − 1. The area of the rectangle
over the interval 〈xi, xi+1〉, for i ∈ {0, 1, 2, . . . , n−1} can be expressed by the
formula:

si = (xi+1 − xi) · f
(
xi + xi+1

2

)
. (4.16)

Then for the sum of the of all n areas of rectangles applies:

s(n) =
n−1∑
i=0

si =
n−1∑
i=0

(xi+1 − xi) · f
(
xi + xi+1

2

)
.

Given this relations (4.14) and (4.15) we can modify the sum in to the fol-
lowing form:

s(n) =
n−1∑
i=0

h · f
(
xi + xi + h

2

)
= h ·

n−1∑
i=0

f

(
xi + h

2

)
. (4.17)

The resulting relation for calculation of the integral by the rectangular method
with number of subintervals n has the form:∫ b

a
f(x) dx ≈ s(n) = h ·

n∑
i=1

f

(
a+ (2i− 1) · h2

)
. (4.18)

For estimation of the error holds:∣∣∣∣∣s(n)−
∫ b

a
f(x) dx

∣∣∣∣∣ 5 (b− a)3

24n2 ·M2, (4.19)

where M2 = maxx∈〈a,b〉 |f ′′(x)|.
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Remark 4.5 The formula (4.18) is also called Midpoint Rule, if we use the
Middle Riemann Sum. If we use the Left-handed Riemann sum, then we say
Rectangular Rule (the left endpoint of the subinterval is used). Then the
formula (4.18) is written as:

∫ b

a
f(x) dx ≈ s(n) = h ·

n−1∑
i=0

f (a+ i · h) .

For estimation of the error holds:∣∣∣∣∣s(n)−
∫ b

a
f(x) dx

∣∣∣∣∣ 5 (b− a)2

2n ·M1,

where M1 = maxx∈〈a,b〉 |f ′(x)|.

4.4.3 Trapezoidal Method
Let the integral (4.13) on page 105 be given. We divide the interval 〈a, b〉
on n equal parts, by n + 1 nodal points x0, x1, x2, . . . , xn. The length of
each interval 〈xi, xi+1〉 is equal to the number h ∈ R, for which the relation
(4.14) holds. Then we can express the nodal points by using the relation
(4.15), where i ∈ {0, 1, 2, . . . , n − 1}, x0 = a and xn = b. We approximate
the function f by a linear function fi: y = fi(x), which passes through
the points [xi, f(xi)] and [xi+1, f(xi+1)] at each interval 〈xi, xi+1〉 for i =
0, 1, 2, . . . , n − 1. We approximate the surface of the original area over the
interval 〈xi, xi+1〉 using the area of trapezoid over the interval 〈xi, xi+1〉 for
i ∈ {0, 1, 2, . . . , n− 1}, which can be expressed by the formula:

si = 1
2 · h · (f(xi) + f(xi+1)) . (4.20)

Then for the integral (4.13) holds:∫ b

a
f(x) dx =

∫ x1

x0
f(x) dx+

∫ x2

x1
f(x) dx+

∫ x3

x2
f(x) dx+ · · ·

· · ·+
∫ xn−1

xn−2
f(x) dx+

∫ xn

xn−1
f(x) dx ≈

≈ s0 + s1 + s2 + · · ·+ sn−2 + sn−1 =
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= h

2 · (f(x0) + f(x1)) + h

2 · (f(x1) + f(x2)) + h

2 · (f(x2) + f(x3)) + · · ·

· · ·+ h

2 · (f(xn−2) + f(xn−1)) + h

2 · (f(xn−1) + f(xn)) =

= h

2 ·
[

(f(x0) + f(x1)) + (f(x1) + f(x2)) + (f(x2) + f(x3)) + · · ·

· · ·+ (f(xn−2) + f(xn−1)) + (f(xn−1) + f(xn))
]

=

= h

2 ·
[
f(x0)+2·f(x1)+2·f(x2)+2·f(x3)+· · ·+2·f(xn−2)+2·f(xn−1)+f(xn)

]
.

Thus:

b∫
a

f(x) dx ≈ h

2 ·
[
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f (xi)
]
. (4.21)

The following holds for the error estimation:∣∣∣∣∣s(n)−
∫ b

a
f(x) dx

∣∣∣∣∣ 5 (b− a)3

12n2 ·M2, (4.22)

where M2 = maxx∈〈a,b〉 |f ′′(x)|.
For estimation of errors we also use the relation in the form:∣∣∣∣∣s(n)−

∫ b

a
f(x) dx

∣∣∣∣∣ 5 (b− a)
12 · h2 ·M2, (4.23)

where M2 = maxx∈〈a,b〉 |f ′′(x)|.

4.4.4 Simpson’s Method
In Simpson’s method we proceed similarly to the trapezoidal method. We
determine the approximate value of the integral (4.13) on page 105. Let
us divide the interval 〈a, b〉 to the even number n = 2m, m ∈ N of equal
parts, by n + 1 nodal points x0, x1, x2, . . . , xn. The length of each interval
〈xi, xi+1〉 is equal to the number h ∈ R, for which the relation (4.14) holds.
Then we can express the nodal points by using the relation (4.15), where
i ∈ {0, 1, 2, . . . , n − 1}, x0 = a and xn = b. We approximate the function
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f by the quadratic function fi: y = fi(x), which passes through the points
[x2i, f(x2i)], [x2i+1, f(x2i+1)], and [x2i+2, f(x2i+2)] at each interval 〈x2i, x2i+2〉,
for i = 0, 1, 2, . . . ,m− 1. We replace the area of the original region over the
interval 〈x2i, x2i+2〉 by the area of a curvilinear trapezoid over the interval
〈x2i, x2i+2〉, for i ∈ {0, 1, 2, . . . ,m−1}, which can be expressed by the formula:

si = 1
3 · h · (f(xi) + 4 · f(xi+1) + f(xi+2)) . (4.24)

Then for the integral (4.13) holds:∫ b

a
f(x) dx =

∫ x2

x0
f(x) dx+

∫ x4

x2
f(x) dx+

∫ x6

x4
f(x) dx+ · · ·

· · ·+
∫ xn−2

xn−4
f(x) dx+

∫ xn

xn−2
f(x) dx ≈

≈ s0 + s1 + s2 + · · ·+ sm−2 + sm−1 =

= h

3 · (f(x0) + 4f(x1) + f(x2)) + h

3 · (f(x2) + 4f(x3) + f(x4)) +

+h3 · (f(x4) + 4f(x5) + f(x6)) + · · ·+

+h3 · (f(xn−4) + 4f(xn−3) + f(xn−2)) + h

3 · (f(xn−2) + 4f(xn−1) + f(xn)) =

= h

3 ·
[

(f(x0) + 4f(x1) + f(x2)) + (f(x2) + 4f(x3) + f(x4)) +

+ (f(x4) + 4f(x5) + f(x6)) + · · ·+

+ (f(xn−4) + 4f(xn−3) + f(xn−2)) + (f(xn−2) + 4f(xn−1) + f(xn))
]

=

= h

3 ·
[
f(x0)+4·f(x1)+2·f(x2)+4·f(x3)+· · ·+2·f(xn−2)+4·f(xn−1)+f(xn)

]
.

Thus:

∫ b

a
f(x) dx ≈ h

3 ·

f(x0) + f(xn) + 4 ·
n
2∑
i=1

f (x2i−1) + 2 ·
n−2

2∑
i=1

f (x2i)

 . (4.25)
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For the error estimate holds:∣∣∣∣∣s(n)−
∫ b

a
f(x) dx

∣∣∣∣∣ 5 (b− a)5

180n4 ·M4, (4.26)

where M4 = maxx∈〈a,b〉 |f (IV )(x)|.
For estimation of errors we also use the relation in the form:∣∣∣∣∣s(n)−

∫ b

a
f(x) dx

∣∣∣∣∣ 5 (b− a)
180 · h4 ·M4, (4.27)

where M4 = maxx∈〈a,b〉 |f (IV )(x)|.
When we want to use the Simpson’s method we must not forget that the

number of dividing points of the interval 〈a, b〉 must be always the odd (i. e.
n is the even). This follows from the relation (4.24) on the page 110. We
must pay attention, when we estimate the number of dividing points n for a
given ε, because the nearest larger non-negative integer can be also the odd
but we need the even n.

4.5 Solved Examples
Example 4.1 Calculate the following indefinite integrals:

(a)
∫ (

4x2 − 2x+ 3−
√
x− 1

4
√
x3

)
dx,

(b)
∫ (2− x)2

x3 dx,

(c)
∫
x2 · cosx dx,

(d)
∫ (arctg x)5

x2 + 1 dx.

Solution:
(a) Integral is rewritten using the rules for integration so that we can use the
integration formula.
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∫ (
4x2 − 2x+ 3−

√
x− 1

4
√
x3

)
dx =

= 4 ·
∫
x2 dx− 2 ·

∫
x dx+ 3 ·

∫
1 dx−

∫
x

1
2 dx−

∫
x−

3
4 dx =

= 4 · x
2+1

2 + 1 − 2 · x
1+1

1 + 1 + 3 · x− x
1
2 +1

1
2 + 1 −

x−
3
4 +1

−3
4 + 1 + c =

= 4 · x
3

3 − 2 · x
2

2 + 3 · x− x
3
2

3
2
− x

1
4

1
4

+ c =

= 4
3x

3 − x2 + 3x− 2
3
√
x3 − 4 4

√
x+ c.

(b) We modify the integrand to such form that we can use the rules for in-
tegration and integration formulas.

∫ (2− x)2

x3 dx =
∫ (

4− 2x+ x2

x3

)
dx =

∫ (
4
x3 −

2x
x3 + x2

x3

)
dx =

=
∫ 4
x3 dx−

∫ 2x
x3 dx+

∫ x2

x3 dx = 4 ·
∫
x−3 dx− 2 ·

∫
x−2 dx+

∫ 1
x

dx =

= 4 x−3+1

−3 + 1 − 2 x−2+1

−2 + 1 + ln |x|+ c = 4x
−2

−2 − 2x
−1

−1 + ln |x|+ c =

= −2
x2 + 2

x
+ ln |x|+ c.

(c) Integrand is the product of a polynomial and trigonometric function cosx.
In such cases, we integrate this function using the integration by parts.
∫
x2 · cosx dx PP=

∣∣∣∣∣ u = x2 v′ = cosx
u′ = 2x v = sin x

∣∣∣∣∣ = x2 · sin x−
∫

2x · sin x dx =

= x2 · sin x− 2 ·
∫
x · sin x dx PP=

∣∣∣∣∣ u = x v′ = sin x
u′ = 1 v = − cosx

∣∣∣∣∣ =

= x2 · sin x− 2 ·
[
x · (− cosx)−

∫
1 · (− cosx) dx

]
=

= x2 · sin x+ 2 · x · cosx− 2 ·
∫

cosx dx =

= x2 · sin x+ 2x · cosx− 2 · sin x+ c.
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(d) If we look at integrand and we realize what it is equal to the derivative
of the function arctan x, so for the calculation of indefinite integral is conve-
nient to use the substitution method.

∫ (arctg x)5

x2 + 1 dx Sub=

∣∣∣∣∣∣
arctg x = t

1
1 + x2 dx = 1 dt

∣∣∣∣∣∣ =
∫
t5 dt = t5+1

5 + 1 + c =

= t6

6 + c = 1
6 · t

6 + c = 1
6 · (arctg x)6 + c.

√

Example 4.2 Calculate the given definite integral by the trapezoidal method
with the accuracy ε = 10−3:

2∫
1

ln (x2 + 4) dx.

Solution:
Denote integrand as the function f : y = ln (x2 + 4). To determine the num-
ber of subintervals n, we need to calculate the first and the second derivative
of the function f , and then to use the estimate of the error (4.22) in calcu-
lating the definite integral by the trapezoidal method.

y′ =
(
ln (x2 + 4)

)′
= 2x
x2 + 4 y′′ =

( 2x
x2 + 4

)′
= 8− 2x2

(x2 + 4)2 .

We calculate the value:

M2 = max
x∈〈a,b〉

|f ′′(x)| = max
x∈〈1,2〉

∣∣∣∣∣ 8− 2x2

(x2 + 4)2

∣∣∣∣∣ = 0,24.

To determine the number of dividing n we use the relation (4.22) on page
109, from which we express the variable n. We get the inequality:

n =

√
(b− a)3 ·M2

12 · ε =
√

13 · 0,24
12 · 0,001 =

√
20 .= 4,47.

We know that n ∈ N therefore, from the inequality n = 4,47 implies that it
is sufficient to choose n = 5. For h holds: h = b− a

n
= 0,2. We create the

table for the calculation of function values (see Table 4.1).
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Table 4.1: Trapezoidal method.
k xk yk = f(xk)
0 1,0 1,609438
1 1,2 1,693779
2 1,4 1,785071
3 1,6 1,880991
4 1,8 1,979621
5 2,0 2,079442

We can calculate the approximate value of the specified definite integral based
on the values from the Table 4.1:

2∫
1

ln (x2 + 4) dx ≈ h

2 ·
[
(y0 + y5) + 2 ·

4∑
i=1

yi

]
=

= 0,2
2 ·
[
(1,609438+2,079442)+2·(1,693779+1,785071+1,880991+1,979621)

]
=

= 0,1 · 18,36780216 = 1,83678.

The approximate value of the definite integral is:

2∫
1

ln (x2 + 4) dx ≈ 1,83678.

We estimate the upper bound of the error of our calculation using the relation
(4.22):∣∣∣∣∣s(5)−

∫ b

a
f(x) dx

∣∣∣∣∣ 5 (b− a)3

12n2 ·M2 = (2− 1)3

12 · 52 · 0,24 = 0,0008 < 0,001.

√
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4.6 Unsolved Tasks
4.1 Calculate the given indefinite integrals.

a)
∫ (

x6 − 4 · x3 + 3
)

dx,

b)
∫ (

1− 2 · x2
)2

dx,

c)
∫ (x− 2)3

x2 dx,

d)
∫ 5
√
x− 6 · 4

√
x3

√
x

dx,

e)
∫

(5 · sin4 x · cosx) dx,

f)
∫

tg x dx,

g)
∫

tg 2 x dx,

h)
∫

ex · (x2 + 3 · x− 4) dx,

i)
∫

sin(3x− 7) dx,

j)
∫

e8−3x dx,

k)
∫

e1−4x2 · 2x dx,

l)
∫

(1− 6x) · ln(2x− 6x2) dx,

m)
∫ 3x2 + 2
x3 + 2x− 6 dx,

n)
∫ ln x

2x dx,

o)
∫ ln2 x

6x dx,
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p)
∫

ln x dx,

r)
∫

(x3 + 3x) · ln x dx,

s)
∫ tg 3x

cos2 x
dx,

t)
∫

(4x+ 2)15 dx,

u)
∫ 1
x · ln4 x

dx,.

4.2 Calculate the given definite integrals.

a)
∫ 1

−1

(
x3 + 4x2 − 2x+ 1

)
dx,

b)
∫ 1

0

(
x3 · e2x

)
dx,

c)
∫ π

2

π
4

2 · sin x · cosx dx,

d)
∫ e

1
x · ln x dx,

e)
∫ 9

3

(1
3x− 2

)8
dx,

f)
∫ π

0
tg x dx,

g)
∫ 1

0
2x · ex2 dx.

4.3 Calculate definite integrals using the trapezoidal method for the given
number of subintervals, n on the interval I = 〈a, b〉 and extimate the upper
bound of the error.

a)
∫ 1

−1

(
2x3 − 5x+ 1

)
dx, n = 16,

b)
∫ 1,2

0

(
e2x2) dx, n = 10,
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c)
∫ π

2

π
4

3 · sin3 2x · cos2 x dx, n = 6,

d)
∫ e

1
x3 · ln

√
x2 + 1 dx, n = 10,

e)
∫ 4

3

(1
3x

2 − 1
)5

dx, n = 8,

f)
∫ π

4

0
tg x dx, n = 12,

g)
∫ 1

0
sin x · ex2 dx, n = 10,

h)
∫ 2

1

sin x
x

dx, n = 8.

4.4 Calculate the definite integral using the Simpson’s method with the ac-
curacy ε = 10−5 and estimate the error of calculation:

0∫
−1

1− x
(x+ 2)2 dx.

4.5 Calculate the integral from task 4.3 letter f) by the rectangular method
and estimate the error of calculation, if accuracy is given ε = 10−3.
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4.7 Results of Unsolved Tasks
4.1 a) 1

7 ·x
7−x4 +3x+c b) 4

5 ·x
5− 4

3 ·x
3 +x+c c) 1

2 ·x
2−6x+6 · ln x+ 8

x
+c

d) 10
7 ·

10
√
x7 − 24

5 · x 4
√
x+ c e) sin5 x+ c f) − ln | cosx|+ c g) tg x− x+ c h)

ex · (x2 +x−5)+ c i) −1
3 ·cos (3x− 7)+ c j) −1

3 ·e
8−3x+ c k) −1

4 ·e
1−4x2 + c l)

(3x2− 1) · (2− ln (2x− 6x2)) + c m) ln |x3 + 2x− 6|+ c n)
(

1
2 · ln x

)2
+ c o)

1
18 · ln

3 x+ c p) x · (ln x− 1) + c r)
(

1
4x

4 + 3
2x

2
)
·
(
ln x− 1

4

)
+ c s) 1

4 · tg
4x+ c

t) 1
64 · (4x+ 2)16 + c u) −1

3·ln3 x
+ c

4.2 a) 14
3 b) 1

8 · e
2 + 3

8 c) 1
2 d) 1

4 · (e
2 + 1) e) 2

3 f) 0 g) e− 1

4.3 a) 2,0000000000 b) 4,8046382541 c) 0,3168332310 d) 11,7688920106
e) 442,9627421238 f) 0,3469302083 g) 0,7829408000 h) 0,6591551087

4.4 1

4.5 0

4.6 −1



Chapter 5

Linear Algebra

5.1 Vector Space
Definition 5.1 A vector space over a field F is a set V , on which are de-
fined the operations addition of elements from V and scalar multiplication
of elements from V by elements of F , such that the following applies:

(1) ∀~a,~b ∈ V : ~a+~b ∈ V ,
(2) ∀~a ∈ V , ∀α ∈ F : α · ~a ∈ V ,
(3) ∀~a,~b ∈ V : ~a+~b = ~b+ ~a,
(4) ∀~a,~b,~c ∈ V : ~a+ (~b+ ~c) = (~a+~b) + ~c,
(5) ∃~0 ∈ V , ∀~a ∈ V : ~a+~0 = ~a,
(6) ∀~a ∈ V , ∃~b ∈ V : ~a+~b = ~0,
(7) ∀~a,~b ∈ V , ∀α ∈ F : α · (~a+~b) = α · ~a+ α ·~b,
(8) ∀α, β ∈ F , ∀~a ∈ V : (α + β) · ~a = α · ~a+ β · ~a,
(9) ∀α, β ∈ F , ∀~a ∈ V : (α · β) · ~a = α · (β · ~a),
(10) ∃1 ∈ F , ∀~a ∈ V : 1 · ~a = ~a.

If a field F is a set of real numbers R and elements of the set V are
n-tuples of real numbers from the set Rn, then the vector space V = Rn

is called n-dimensional arithmetic vector space. Denote the zero vector ~0 =
(0, 0, 0, . . . , 0) ∈ Rn. Unit vector with the unit on the k-th position is denoted
by letter ~ek = (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Rn.

Remark 5.1 From Definition 5.1 it is easy to see the following consequences:

119
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(a) uniqueness of zero element (origin),
(b) cancellation law for vector addition (i. e. ~a+ ~u = ~b+ ~u =⇒ ~a = ~b),
(c) uniqueness of the opposite vector (i. e. (∀~a ∈ V )(∃!(−~a) ∈ V ):

~a+ (−~a) = ~0),
(d) α · ~a = ~0 ⇐⇒ (α = 0 ∨ ~a = ~0) for α ∈ F ∧ ~a ∈ V ,
(e) (−1) · ~a = −~a for ~a ∈ V .

Definition 5.2 We call subspace of the vector space V a non-empty set W ,
∅ 6= W ⊆ V , such that:

(1) ∀a, b ∈ W : a+ b ∈ W ,
(2) ∀a ∈ W , ∀α ∈ F : α · a ∈ W .

Definition 5.3 Let ~a1,~a2, . . . ,~an ∈ V and α1, . . . , αn ∈ F . A linear combi-
nation of vectors ~a1,~a2, . . . ,~an is any vector ~u of the form: ~u = α1 ·~a1 + α2 ·
~a2 + · · ·+ αn · ~an.

Definition 5.4 The span of S is the set of all finite linear combinations of
elements of S: span(S) = {~x ∈ V : ~x = ∑n

i=1 αi · vi; where vi ∈ S; and
n = 1}. Denote it [S].

Remark 5.2 The span of S is also called the Linear cover or Linear cover
of vector system S from the vector space V , i. e. the span(S) is the set of all
linear combinations of all finite subsystems of the system S.1

Definition 5.5 Let ~ai ∈ V and αi ∈ F for i = 1, 2, . . . , k. A nontrivial
linear combination of vectors ~a1, . . . ,~ak is such linear combination α1 · ~a1 +
α2 ·~a2 + · · ·+αk ·~ak, that at least one of the coefficients α1, . . . , αk is different
from zero. A trivial linear combination of vectors ~a1, . . . ,~ak is the linear
combination 0 · ~a1 + 0 · ~a2 + · · ·+ 0 · ~ak (i. e. ∀i ∈ {1, 2, . . . , k}: αi = 0).

Definition 5.6 System of vectors (group of vectors) {~a1, . . . ,~ak} ⊆ V is
called linearly dependent if there is the nontrivial linear combination of vec-
tors ~a1, . . . ,~ak for which it holds: α1 · ~a1 + α2 · ~a2 + · · · + αk · ~ak = ~0. The
system of vectors {~a1, . . . ,~ak} ⊆ V is called linearly independent if it is not
linearly dependent.

1Let v1, . . . , vn ∈ V . The span of (v1, . . . , vn) is a subspace of V . Moreover, (v1, . . . , vn)
is a spanning set in this subspace. We denote the span of v1, . . . , vn by [v1, . . . , vn].
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Definition 5.7 A system B, ∅ 6= B ⊆ V , which satisfies the following con-
ditions:

(1) B is a linearly independent system of V ,

(2) system B generates the vector space V i. e. [B] = V ,

is called a basis B of the vector space V .

Definition 5.8 Let V be the vector space over the field F . We say that the
vector space V is finite-dimensional, if there exists finite system of vectors
S ⊆ V , which generates vector space V . An infinite-dimensional vector
space is one that is not finite-dimensional.

Definition 5.9 A dimension of finite-dimensional vector space V is the
number of vectors of a basis of V . We will denote it by dim(V ), dim(~0) = 0.2

Definition 5.10 A rank of a system S of finite-dimensional vector space V
is dim([S]).3

Definition 5.11 The groups of vectors S and T over the vector space V are
called equivalent, if it holds [S] = [T ].4

Elementary Operations on Vector Space:5

(1) interchange the order of determining (generating) vectors,
(2) multiplication of vector by any non-zero scalar α ∈ F , α 6= 0,
(3) adding a linear combination of other vectors to some vector,
(4) omitting a vector that is a linear combination of the other vectors,
(5) adding a vector which is a linear combination of the other vectors.

2If vector space V is finite-dimensional, then V has a finite basis. Every basis B for
V contains the same number of vectors. The unique number of vectors in each basis B is
the dimension of the vector space V .

3The rank of a system S is given uniquely.
4One system of vectors has infinitely many bases. If two bases define the same vector

system then one of the bases was created from the second base using the elementary
operations.

5These are changes respectively, equivalent modifications, which do not change the vec-
tor space.
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Theorem 5.1 Let ~a ∈ V . System {~a} is linearly dependent if and only if
~a = ~0.

Theorem 5.2 System of vectors S, ∅ 6= S ⊆ V is linearly dependent, if
there exists a finite subsystem of vectors {~a1, . . . ,~ak} ⊆ S, where the system
of vectors {~a1, . . . ,~ak} is linearly dependent.

Theorem 5.3 System of vectors S, ∅ 6= S ⊆ V is linearly independent if
every finite subsystem of S is linearly independent.

Theorem 5.4 The system of vectors {~a1, . . . ,~ak} ⊆ V , where k > 1 is
linearly dependent if and only if at least one of the vectors can be expressed
as a linear combination of the other vectors.

Theorem 5.5 The system of vectors {~a1, . . . ,~ak} ⊆ V , where k > 1 is
linearly independent if and only if neither of the vectors can be expressed as
a linear combination of other vectors.

Theorem 5.6 The system of vectors {~a1, . . . ,~ak} ⊆ V is linearly indepen-
dent, if holds:

(1) Every nontrivial linear combination of vectors ~a1, . . . ,~ak is different
from zero.

(2) Only trivial linear combination of vectors ~a1, . . . ,~ak is equal to zero.

(3) α1 · ~a1 + α2 · ~a2 + · · ·+ αk · ~ak = ~0 =⇒ α1 = 0 ∧ α2 = 0 ∧ · · · ∧ αk = 0,
αi ∈ F , i = 1, 2, . . . , k .

Theorem 5.7 In vector space V = Rn is each system of vectors containing
more than n vectors linearly dependent.

Theorem 5.8 Each finite-dimensional vector space different from {~0} has a
finite basis.

Theorem 5.9 If the vector space V has a finite basis consisting of n vectors,
then each basis of vector space V has exactly n elements.

Theorem 5.10 Suppose the vector space V with dim(V ) = n is given. Each
group of vectors from V which is consisting of a greater number than n vectors
is linearly dependent.
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Theorem 5.11 Each linearly independent system of vectors can be extended
to a basis in finite-dimensional vector spaces.

Theorem 5.12 Suppose V is a finite-dimensional vector space with dim(V ) =
n > 0. Let {~a1, . . . ,~an} be an arbitrary group of vectors from the vector space
V . Then the following conditions are equivalent:

(1) {~a1, . . . ,~an} is linearly independent group of vectors,

(2) [{~a1, . . . ,~an}] = V ,

(3) {~a1, . . . ,~an} is basis of the vector space V .

Theorem 5.13 The groups of vectors S and T are equivalent if and only if
S ⊆ [T ] ∧ T ⊆ [S].

Theorem 5.14 Each of the following systems of vectors (1) – (4) is equiva-
lent to the system of vectors {~a1, . . . ,~ai, . . . ,~aj, . . . ,~ak}:

(1) {~a1, . . . ,~ai, . . . ,~aj, . . . ,~ak},

(2) {~a1, . . . , α · ~ai, . . . ,~aj, . . . ,~ak}, where α 6= 0, α ∈ F ,

(3) {~a1, . . . ,~ai, . . . ,~aj + α · ~ai, . . . ,~ak}, α ∈ F ,

(4) {~a1, . . . ,~ai, . . . ,~aj, . . . ,~ak, α1 · ~a1 + · · ·+ αk · ~ak}, αi ∈ F .

5.2 Matrix
Definition 5.12 A matrix of type m×n is system of the elements which are
written to a table with m rows and n columns, where m and n are positive
integers. For writing matrices we use parentheses

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...
am1 am2 . . . amn

 ,

where aij are elements (entries) of the matrix A for i = 1, 2, . . . ,m and
j = 1, 2, . . . , n. We usually denote the matrix by capital letters and also we
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use the shorthand notation of the matrix: A = {aij}, i = 1, 2, . . . ,m and
j = 1, 2, . . . , n.6

Definition 5.13 (Special types of matrices:)

Rectangular Matrix: A general matrix of type m×n, matrix with m rows
and n columns.

Square Matrix: Amatrix, which has the same number of rows and columns,
matrix of type n× n.

Column Matrix: A matrix of type m × 1. It is also called the column
vector.

Row Matrix: A matrix of type 1× n. It is also called the row vector.

Zero Matrix: A matrix of type m × n, which has all elements equal zero,
i. e. ∀i, j : aij = 0. We will denote it 0.

Diagonal Matrix: A square matrix of type n × n, where aij = 0, for i 6=
j, i, j ∈ {1, 2, . . . , n}. We will denote it: diag{a11, a22, . . . , ann} =
diag{aii}ni=1.

Identity Matrix: Diagonal matrix I = diag{a11, a22, . . . , ann}, where ele-
ments aii = 1, i ∈ {1, 2, . . . , n}. We will denote it I, In, or In×n. Matrix
I is the multiplicative identity for the matrices.7

Upper Triangular Matrix: A square matrix of type n×n with zeros below
the main diagonal, i. e. aij = 0, for j < i, i, j ∈ {1, 2, . . . , n}.

Lower Triangular Matrix: A square matrix of type n×n with zeros above
the main diagonal, i. e. aij = 0, for i < j, i, j ∈ {1, 2, . . . , n}.

Transpose Matrix: Transpose matrix A> to the matrix A of type m × n
is matrix of type n ×m, for which holds: a>ij = aji, i ∈ {1, 2, . . . ,m},
j ∈ {1, 2, . . . , n}, i. e. we exchanged the rows and the columns of the
matrix A with each other.

6The m× n is the type of matrix A and it is also called dimension of matrix A.
7A square matrix in which the elements in the leading diagonal are all equal to one and

all other elements are equal to zero is also called unit matrix, but the name unit matrix is
also used in the context of a square matrices for which all elements are equal to one, we
will denote it E.
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Symmetric Matrix: Matrix A is symmetric, if for elements of a matrix A
holds: aij = aji for all i, j, i. e. A = A>.

Definition 5.14 We say that the matrices A = {aij} and B = {bij} are
equal (we write A = B), if matrices A and B are of the same type (have the
same number of rows and columns) and aij = bij for all i, j.
Basic operations with matrices.

Definition 5.15 A sum (addition) of two matrices A = {aij} and B = {bij}
of the type m× n is the matrix C = {cij} (we write C = A+B) of the type
m × n in which for all entries holds: cij = aij + bij, ∀i ∈ {1, 2, . . . ,m},
∀j ∈ {1, 2, . . . , n}.

Remark 5.3 The sum of two matrices A and B is matrix A + B which is
defined by adding corresponding entries: (A+B)ij = aij + bij.

Definition 5.16 We say that the matrix D is α multiple of matrix A (we
write D = α · A, α ∈ R), if the matrices A and D are of the same type and
for all entries of the matrix D holds: dij = α · aij for all i, j.

Remark 5.4 A scalar multiplication is defined as (α · A)ij = α · aij.

Definition 5.17 Let matrices A of type m×p and B of type p×n be given.
The product of two matrices A and B is the matrix C of type m × n (we
write C = A ·B), for which holds:

cij =
p∑
l=1

ail · blj

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Remark 5.5 Matrix Product: (i, j) entry of matrix A · B is obtained by
multiplying each element in the ith row of matrix A by the corresponding
element in the jth column of the matrix B and summing, i. e.

(A ·B)ij =
p∑
l=1

ail · blj.
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Basic Properties of Matrices

(1) A = A, the equality relation “=” is reflexive.

(2) If A = B, then B = A, the equality relation “=” is symmetric.

(3) If A = B and B = C, then A = C, the equality relation “=” is
transitive.

(4) (−1) · A = −A.

(5) A+ (−A) = A− A = 0.

(6) A+ A> is symmetric matrix.

(7) A · I = I · A = A, where A is arbitrary square matrix.

(8) A ·B 6= B · A in general case.8

(9) A+B = B + A, commutativity of addition “+”.

(10) A+ (B + C) = (A+B) + C, associativity of addition “+”.

(11) A+ 0 = 0 +A = A, additive identity.

(12) α · (A+B) = α · A+ α ·B, distributivity .

(13) (α + β) · A = α · A+ β · A, distributivity.

(14) (A ·B) · C = A · (B · C), associativity of multiplication “·”.

(15) (A+B) · C = A · C +B · C, right distributivity.

(16) A · (B + C) = A ·B + A · C, left distributivity.

(17) (α · β) · A = α · (β · A), associativity of scalar multiplication.

(18) 1 · A = A · 1 = A, scalar identity.

(19) (A ·B)> = B> · A>.

(20) (A1 · A2 · · · · · An)> = A>n · · · · · A>2 · A>1 .
8If there exists a product of matrices A ·B, then the product B ·A needs not to exist.
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Remark 5.6 (Zero Product Property) Just because a product of two matri-
ces is the zero matrix does not mean that one of them was the zero matrix.

Remark 5.7 (Multiplicative Property of Equality) If A = B, then AC =
BC. This property is still true, but the converse is not necessarily true. Just
because AC = BC does not mean that A = B. If A = B, then AC = BC
or CA = CB, but AC 6= CB for the general matrix C.

Definition 5.18 Let A be a matrix m × n. Let h1 be dimension of the
system of row vectors and h2 be dimension of the system of column vectors.
The number h = h1 = h2 is called the rank of matrix A and it is denoted by
the symbol rank(A) = h.

Remark 5.8 Alternative definition of the rank of a matrix A: Let A be
a m × n matrix over a field R. We say that the column rank of the matrix
A is the maximum number of linearly independent columns of the matrix
A, while the row rank of the matrix A is the maximum number of linearly
independent rows of the matrix A. (We regard columns or rows as vectors
in Rm or Rn, respectively.)

Definition 5.19 Let A be a square matrix of the type n × n. We say that
the matrix A is regular, if rank(A) = n (singular, if rank(A) < n).

The elementary operations on matrices are such adjustments to the rows
(or columns) of the matrix, which do not change the rank of the matrix.
The elementary operations are usually also called row (or column) matrix
transformations (modifications).

We can transform the non-upper triangular matrix to an upper triangular
matrix using so called elementary row and column operations, which do not
change the rank of the matrix.

The procedure of transformation of an arbitrary matrix to an upper tri-
angular matrix (all of whose elements on the main diagonal are different from
zero) by means of the elementary row and column operations is called the
Gauss algorithm.
Elementary Operations:

(1) change of order of rows,

(2) multiplication of some row by a non-zero real number,
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(3) addition of a linear combination of the other rows to some row,

(4) omission of a row which is a linear combination of the other rows,

(5) omission of a zero row.

All elementary operations can also be performed with columns.

Definition 5.20 A matrix B is called equivalent to the matrix A, if the ma-
trix B can be derived from the matrix A using a finite number of elementary
transformations. The relation “equivalence” defined above is an equivalence
relation on the set of all m × n matrices; that is, it is reflexive, symmetric,
and transitive.

Let be given an arbitrary matrix A of the type m× n. We know that for
the rank of the matrix A applies: 0 5 rank(A) 5 min{m,n}. The rank of the
zero matrix is zero. For arbitrary non-zero matrix A applies: rank(A) ∈ N.
The rank of the matrix A is the dimension of the linear span of column or
row vectors of the matrix A.

Theorem 5.15 The following four assertions hold:9

(a) Elementary column operations don’t change the column rank of a ma-
trix.

(b) Elementary row operations don’t change the column rank of a matrix.

(c) Elementary column operations don’t change the row rank of a matrix.

(d) Elementary row operations don’t change the row rank of a matrix.

Definition 5.21 Let A be a square matrix of the type n×n. If there exists
a matrix B to the matrix A, that following applies: A ·B = B ·A = I, then
the matrix B is called the inverse matrix of the matrix A, and it is denoted
by the symbol A−1.

Theorem 5.16 Let A be a square matrix of the type n × n. A necessary
and sufficient condition for the existence of the inverse matrix A−1 to the
matrix A is, that the matrix A is regular, i. e. rank(A) = n (det(A) 6= 0).
We say that matrix A is invertible.

9The rank is independent of the row and column operations used to compute it.
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Properties of inverse matrices:

(1) (A−1)−1 = A,

(2) A · A−1 = A−1 · A,

(3) diag(a1, a2, . . . , an) · diag(b1, b2, . . . , bn) = I if and only if ai · bi = 1,

(4) (A ·B)−1 = B−1 · A−1,

(5) (A1 · A2 · · · · · Ak−1 · Ak)−1 = A−1
k · A−1

k−1 · · · · · A−1
2 · A−1

1 .

5.3 Determinant
Let A = {aij} be a square matrix of the type n × n. We can assign a real
number to the matrix A, which we call the determinant. We will define this
using the following definitions.

Definition 5.22 Let A = {aij} be a square matrix of the type n×n. A Mi-
nor of the matrix A which is corresponding to the element aij of matrix A is
determinant of the (n− 1)× (n− 1) square sub-matrix which arises from A
by omission of the i-th row and the j-th column, for i, j ∈ {1, 2, . . . , n}. We
will denote it det(Aij).10

Definition 5.23 A co-factor of element aij of n×n square matrix A = {aij}
is called the product of number (−1)i+j and minor of matrix A which is
corresponding to the element aij for i, j ∈ {1, 2, . . . , n}. We will denote it
det(Aij) = (−1)i+j · det(Aij).

Definition 5.24 Let A = {aij} be a square matrix of the type n × n. De-
terminant of the matrix A is a real number, which is denoted by det(A) or
|A| and for which holds:

(1) det(A) = a11, if A = {aij} is a square matrix of type 1× 1,

(2) det(A) =
∣∣∣∣∣ a11 a12
a21 a22

∣∣∣∣∣ = a11 · a22 − a12 · a21,

10Determinant det(Aij) is called the minor, which is the abbreviation for “minor deter-
minant”.
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(3) det(A) =

∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣ = a11 · a22 · a33 + a21 · a32 · a13+
+a31 · a12 · a23 − (a13 · a22 · a31+
a23 · a32 · a11 + a33 · a12 · a21),

(4) det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1(n−1) a1n
a21 a22 . . . a2(n−1) a2n
... ... . . .

... ...
a(n−1)1 a(n−1)2 . . . a(n−1)(n−1) a(n−1)n
an1 an2 . . . an(n−1) ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=
n∑
k=1

akj · det(Akj) =
n∑
l=1

ail · det(Ail)

for arbitrary i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n}.

Remark 5.9 If A = {aij} is an n × n square matrix (for n > 1) then we
choose an arbitrary i-th row of the matrix A and we put:

det(A) =
n∑
l=1

ail · det(Ail) =

= ai1·det(Ai1)+ai2·det(Ai2)+ai3·det(Ai3)+· · ·+ain−1·det(Ain−1)+ain·det(Ain).

The sum ai1 ·det(Ai1) + ai2 ·det(Ai2) + · · ·+ ain−1 ·det(Ain−1) + ain ·det(Ain)
is called the expansion of the determinant according to the i-th row. The
expansion of the determinant according to the j-th column reads:11

det(A) =
n∑
k=1

akj · det(Akj) =

= a1j·det(A1j)+a2j·det(A2j)+a3j·det(A3j)+· · ·+an−1j·det(An−1j)+anj·det(Anj).

Theorem 5.17 Let A> be the transposed matrix to the square matrix A,
then det(A) = det(A>).

11It is also called co-factor expansion along the i-th row (the j-th column).
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Theorem 5.18 Let a matrix B be the matrix, which arose from the square
matrix A by exchange of two rows (columns). Then det(B) = − det(A).

Theorem 5.19 If a square matrix B is obtained from a square matrix A by
multiplying the arbitrary j-th column by a non-zero scalar α, then det(B) =
α · det(A). If the square matrix B is obtained from the square matrix A
by multiplying the arbitrary i-th row by a non-zero scalar α, then det(B) =
α · det(A).

Theorem 5.20 If a square matrix B is obtained from a square matrix A
by adding of a linear combination of row (column) of the matrix A to some
row (column) of the matrix A, then for the value of the determinant of the
matrix B holds: det(B) = det(A).

Theorem 5.21 Let A be a square matrix. Determinant of the matrix A
is equal to zero (det(A) = 0) if and only if at least one row (column) of
the matrix A is a linear combination of the remaining rows (columns) of the
matrix A.

Theorem 5.22 If a square matrix A contains at least two identical rows
(columns) then det(A) = 0.

Theorem 5.23 If a square matrix A contains at least one zero row (column)
then det(A) = 0.

Theorem 5.24 The following applies:

det(A) =

∣∣∣∣∣∣∣∣∣∣
a11 + b11 a12 + b12 . . . a1n + b1n
a21 a22 . . . a2n
... ... . . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
b11 b12 . . . b1n
a21 a22 . . . a2n
... ... . . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣
.
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Theorem 5.25 If a n × n square matrix A is a triangular matrix (upper
triangular, lower triangular) then det(A) = det(diag{a11, a22, . . . , ann}) =
a11 · a22 · · · · · ann.
Theorem 5.26 The n × n square matrix A is a regular (invertible) if and
only if det(A) 6= 0.
Definition 5.25 Let A be a square matrix of the type n× n. Then matrix
Adj(A)

Adj(A) =


det(A11) det(A21) . . . det(An1)
det(A12) det(A22) . . . det(An2)

... ... . . .
...

det(A1n) det(A2n) . . . det(Ann)


is called the adjugate (adjoint) of A (it is a transposed matrix of co-factors
to the elements of matrix A).
Theorem 5.27 If the n× n matrix A is invertible, then its inverse is equal
to

A−1 = 1
det(A) · Adj(A). (5.1)

Theorem 5.28 Let A be a square matrix of the type n× n. Then holds:
det(Adj(A)) = (det(A))n−1. (5.2)

5.4 Systems of Linear Equations
Definition 5.26 System (set) of m linear equations with n unknowns vari-
ables over a set of real numbers R is called a finite sequence of equations
S:

a11 · x1 + a12 · x2 + · · ·+ a1n · xn = b1

a21 · x1 + a22 · x2 + · · ·+ a2n · xn = b2

a31 · x1 + a32 · x2 + · · ·+ a3n · xn = b3 (5.3)
... = ...

am1 · x1 + am2 · x2 + · · ·+ amn · xn = bm,



133 5.4. SYSTEMS OF LINEAR EQUATIONS

where ~x = (x1, x2, . . . , xn)> is the vector of unknown variables, aij ∈ R are
the coefficients of the system S, and~b = (b1, b2, b3, . . . , bm)> is a vector, which
is called the right hand side of the system of linear equations S.

The system of equations S can be written in matrix form as A · ~x = ~b,
where

A =


a11 . . . a1n
... . . . ...
am1 . . . amn

 and ~b =


b1
...
am

.
The matrix A is called the matrix of the system S and the augmented matrix
Ab = (A|~b) is m× (n + 1) matrix (the entries of ~b are placed to the right of
the matrix A). It can be written as:

Ab = (A|~b) =


a11 . . . a1n b1
... . . . ... ...
am1 . . . amn bm

 . (5.4)

If the system has at least one solution (one solution or infinitely many solu-
tions), then it is said to be consistent system. If the system has no solution,
then it is said to be inconsistent system (singular).

Definition 5.27 The basic terms of systems of linear equations (SLE) S
having m equations and n unknowns:

Homogeneous system of linear equations: If vector ~b = ~0 (is zero vec-
tor), the system is homogeneous, i. e. if for all i ∈ {1, 2, . . . ,m} holds:
bi = 0, then the system S is called homogeneous system of linear equa-
tions (HSLE). The homogeneous system of linear equations S is de-
noted by Sh.

Non-homogeneous system of linear equations: If vector~b 6= ~0, the sys-
tem is non-homogeneous, i. e. if there exists i ∈ {1, 2, . . . ,m}, such that:
bi 6= 0, then the system S is called non-homogeneous system of linear
equations (abbreviated SLE).

Solution of the SLE: Ordered n-tuple of real numbers (c1, c2, c3, . . . , cn)> ∈

Rn is called solution of SLE S, if
n∑
j=1

aij ·cj = bi for all i ∈ {1, 2, . . . ,m}.
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Set of solutions of the SLE: The set of all vectors ~c = (c1, c2, c3, . . . , cn)>,
which are solution of the SLE S is called the set of solutions of SLE S
and is denoted by Ω or Ω(S).

Trivial solution of the HSLE: Zero vector is called the trivial solution
(zero solution) of HSLE.

Nontrivial solution of the HSLE: If the solution of the HSLE has at
least one non-zero coordinate, then such a solution is called the non-
trivial solution of the HSLE.

Zero equation: The equation 0 · x1 + 0 · x2 + · · ·+ 0 · xn = 0 is called zero
equation.

Contradictory equation: Equation 0 · x1 + 0 · x2 + · · ·+ 0 · xn = bi, where
bi 6= 0 for some i ∈ {1, 2, . . . ,m} is called contradictory equation.12

Equivalent SLE: The system S1 is equivalent to the system S2 if and only
if both systems have the same set of solutions Ω. We mark this rela-
tionship: S1 ∼ S2 resp. S1 ≈ S2.13

Pivot of equation: The pivot (main coefficient) of the i-th equation qi is
the first nonzero coefficient from the left side in the i-th row (i-th equa-
tion), i. e. the first aij 6= 0 from the left side for some i ∈ {1, 2, . . . ,m} is
called pivot of equation qi: ai1·x1+ai2·x2+· · ·+aij ·xj+· · ·+ain·xn = bi.
Coefficients ai1 up to ai,j−1 are zero.

Gaussian form of the SLE: The system of linear equations S without
zero equations is in Gaussian form, if it holds: If i < j, then pivot
aik of the i-th equation qi has a smaller column index as pivot ajl of
the j-th equation qj (i. e. k < l). The system of linear equations in
Gaussian form will be denoted by Sg.

Remark 5.10 Two SLE’s using the same set of variables are equivalent if
each of the equations in the second system can be derived algebraically from
the equations in the first system, and vice-versa. Two systems are equivalent

12It is possible to derive a contradiction from the equations, that may always be rewritten
using equivalent operations, such as the equality 0 = 1.

13Two systems of equations S1 and S2 are called equivalent if they have identical sets
of solutions (i. e. Ω(S1) = Ω(S2)).
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if either both are inconsistent or each equation of any of them is a linear
combination of the equations of the other one.
Elementary operations for systems of linear equations, which do not change
the set of solutions:

(1) Omission zero equation.

(2) Multiplying any equation by a nonzero real number.

(3) Adding one equation to another equation.

(4) Exchanging order of equations.

(5) Adding to one equation linear combination of other equations.

Gaussian elimination is reducing a system of equations (lining up the
variables, the equations are the rows), a matrix A, or an augmented matrix
Ab by using elementary row operations.

Definition 5.28 Let a SLE S be given and let the systems S and Sg be
equivalent, where Sg is system of linear equations in Gaussian form. The
number of non-zero equations of the system Sg is called the rank of the
system S and it is denoted by rank(S).

Definition 5.29 Let ~w1, ~w2, . . . , ~wk; ~wi = (c1i, c2i, . . . , cni); i ∈ {1, 2, . . . , k}
be solutions of the SLE S (also HSLE). Let α1, α2, . . . , αk ∈ R. Then vector
~w = α1 · ~w1 + α2 · ~w2 + α3 · ~w3 + · · ·+ αk · ~wk is called linear combination of
solutions ~w1, ~w2, . . . , ~wk.

Definition 5.30 The set of solutions {~w1, ~w2, . . . , ~wk} is called fundamental
system of solutions of HSLE Sh, if holds:

(1) Each solution ~w ∈ Ω(Sh) is a linear combination of solutions ~w1, . . . , ~wk,
i. e. (∀w ∈ Ω(S)): ~w = ∑k

i=1 αi · ~wi.

(2) Solutions ~w1, ~w2, . . . , ~wk are linearly independent, i. e. no solution ~wi for
i ∈ {1, 2, 3, . . . , k} is a linear combination of solutions ~w1, ~w2, . . . , ~wi−1,
~wi+1, . . . , ~wk.

Theorem 5.29 Each system S of m linear equations of n unknowns can be
transformed by elementary modifications to the Gaussian form.
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Theorem 5.30 Let S ∈ Sm,n(R)14 and suppose that S ∼ S1 ∼ S2 ∼ · · · ∼
Sg. Then the following statements hold:

(1) Ω(S) = Ω(Sg).

(2) If elimination produces a contradiction, i. e. Sg contains a contradictory
equation, then Ω(S) = ∅ (system S has no solutions).

(3) If the number of non-zero equations of the system Sg equals to the
number of unknowns, then |Ω(S)| = 1 (system S has a unique solution).

(4) If Ω(S) 6= ∅ and the number of non-zero equations of the system Sg is
less than the number of unknown variables, then Ω(S) is an infinite set
(system S has infinitely many solutions).

Theorem 5.31 Let Sh be HSLE and let ~w1 and ~w2 be solutions of HSLE
Sh. Then also ~w = ~w1 + ~w2 is a solution of the HSLE Sh.

Theorem 5.32 Let Sh be HSLE and let ~w1 be a solution of HSLE Sh and
α ∈ R. Then also ~w = α · ~w1 is a solution of the HSLE Sh.

Theorem 5.33 Let Sh be HSLE. If ~w1, ~w2, . . . , ~wk are solutions of HSLE Sh,
then also their linear combination ~w = α1 · ~w1 +α2 · ~w2 +α3 · ~w3 + · · ·+αk · ~wk
is a solution of the HSLE Sh, where α1, α2, . . . , αk ∈ R.

Theorem 5.34 Let Sh be HSLE, Sh ∈ Sm,n(R). The system Sh has only
trivial solution if and only if rank(Sh) = n.

Theorem 5.35 The fundamental system of solutions of the HSLE Sh has
q = n− rank(Sh) elements, if rank(Sh) < n.

Theorem 5.36 Let S ∈ Sm,n(R) and let Sh be HSLE corresponding to the
system S.15 If ~w1 ∈ Ω(S) and ~w2 ∈ Ω(S), then ~w1 − ~w2 ∈ Ω(Sh).

14Sm,n(R) is designation of the set of all systems of m linear equations on n unknowns
over a set of real numbers R.

15HSLE corresponding to the system S ∈ Sm,n(R) is system Sh, which has the same
coefficients aij as a system S, but the right hand side of the system Sh is equal to the zero
vector.
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Theorem 5.37 Let S ∈ Sm,n(R) be SLE and let Sh be HSLE corresponding
to the system S. Suppose that ~w1, ~w2, . . . , ~wn−r, where r = rank(S) < n
is fundamental system of solutions of the HSLE Sh and ~w? is particular
solution16 of the system S. Then for every solution ~w ∈ Ω(S) there exist real
numbers α1, α2, . . . , αn−r ∈ R, such that:

~w = ~w? + α1 · ~w1 + α2 · ~w2 + α3 · ~w3 + · · ·+ αn−r · ~wn−r.

Theorem 5.38 (Fundamental Theorem for Homogeneous System of Linear
Equations) Suppose A · ~x = ~0 is HSLE of m linear equations of n unknown
variables and the rank(A) = r.17

(1) If r = n, then the trivial solution is the only solution.

(2) If r < n, there are infinitely many solutions and the general solution
will contain n− r arbitrary constants.

Theorem 5.39 (Fundamental Theorem)18 Let S ∈ Sm,n(R) be SLE and let
Sh be HSLE corresponding to the system S. The system S has a solution if
and only if rank(S) = rank(Sh). Furthermore,
(1) if rank(S) = rank(Sh) = n, then the system S has exactly one solution

(unique solution).

(2) If rank(S) = rank(Sh) < n, then the system S has infinitely many
solutions.

(3) If rank(S) 6= rank(Sh), then the system S has no solution (i. e. Ω(S) =
∅).

Theorem 5.40 (Cramer’s rule) Let S ∈ Sm,n(R) be SLE. If the determinant
D = det(S) 6= 0, then the system S has unique solution

~w =
(
D1

D
,
D2

D
,
D3

D
, . . . ,

Dn

D

)
,

where D is the determinant of the matrix of the system S i. e. determinant
of matrix A = {aij}ni,j=1 and Di is determinant D with i-th column replaced
by the right hand side ~b, for i ∈ {1, 2, 3, . . . , n}.

16Particular solution of the system S is an arbitrary solution ~w? of the system S.
17This system always has at least one solution, namely the trivial solution.
18Fundamental theorem for the nonhomogeneous system of linear equations or also The

Frobenius Theorem.
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5.5 Numerical Methods for Solving Systems
of Linear Equations

Iterative methods, unlike the exact methods, usually do not lead to the exact
solution after the final number of steps of calculation. In iterative methods
we choose the initial approximation of the solution and we will improve this
solution by certain procedures (algorithms). This solution at each step of
the iterative method will improve. Since we can not do the calculation for
an infinite number of steps, we stop algorithm after finite number of steps.
We obtain approximate solutions of the systems of linear equations.

5.5.1 Jacobi’s Method
Let SLE with n linear equations and n unknown variables be given. Suppose
main diagonal elements a11, a22, . . . , ann be nonzero.

a11 · x1 + a12 · x2 + · · ·+ a1n · xn = b1

a21 · x1 + a22 · x2 + · · ·+ a2n · xn = b2

a31 · x1 + a32 · x2 + · · ·+ a3n · xn = b3
... = ...

an1 · x1 + an2 · x2 + · · ·+ ann · xn = bn.

From the first equation we express the variable x1, from the second equation
we express the variable x2 and so on. From the n-th equation we express the
variable xn and we obtain the system of equations:

x1 = 1
a11
· (b1 − a12 · x2 − a13 · x3 − · · · − a1n · xn)

x2 = 1
a22
· (b2 − a21 · x1 − a23 · x3 − · · · − a2n · xn)

x3 = 1
a33
· (b3 − a31 · x1 − a32 · x2 − · · · − a3n · xn)

... = ...
xn = 1

ann
· (bn − an1 · x1 − an2 · x2 − · · · − an−1,n−1 · xn−1) .
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At the beginning we choose any initial approximation of the solution, which
will be denoted superscript zero ~x(0) = (x(0)

1 , x
(0)
2 , x

(0)
3 , . . . , x(0)

n )>. This so-
lution will be substituted into the right-hand side of the rewritten system
of equations and we obtain a new approximation of the solution ~x(1) =
(x(1)

1 , x
(1)
2 , x

(1)
3 , . . . , x(1)

n )>. We continue like this until we obtain the k-th ap-
proximation of the solution of the SLE in the form ~x(k) = (x(k)

1 , x
(k)
2 , . . . , x(k)

n )>.
Then the (k + 1)-st approximation of the solution of the SLE is calculated
according to the scheme:

x
(k+1)
1 = 1

a11
·
(
b1 − a12 · x(k)

2 − a13 · x(k)
3 − · · · − a1n · x(k)

n

)
x

(k+1)
2 = 1

a22
·
(
b2 − a21 · x(k)

1 − a23 · x(k)
3 − · · · − a2n · x(k)

n

)
x

(k+1)
3 = 1

a33
·
(
b3 − a31 · x(k)

1 − a32 · x(k)
2 − · · · − a3n · x(k)

n

)
(5.5)

... = ...
x(k+1)
n = 1

ann
·
(
bn − an1 · x(k)

1 − an2 · x(k)
2 − · · · − an−1,n−1 · x(k)

n−1

)
.

This procedure will generate a sequence of approximations of the solution of
the SLE {~x(0), ~x(1), ~x(2), ~x(3), . . . , ~x(k), . . . }, which can converge to the exact
solution of the SLE. We continue in calculation until we reach required pre-
cision i. e. approximation of the solution stabilizes for the required number
of decimal places or exceeds the given maximum number of iterations.

Now, this whole procedure will be described in matrix form. Given a
square system of n linear equations:

A · ~x = ~b,

we can write:
(Ac + Ad) · ~x = ~b,

Ad · ~x = ~b− Ac · ~x,

~x = A−1
d · (~b− Ac · ~x).

We obtain iterative formula:

~x(k+1) = A−1
d · (~b− Ac · ~x(k)), (5.6)
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where

A =


a11 a12 . . . a1n−1 a1n
a21 a22 . . . a2n−1 a2n
... ... . . . ... ...
an1 an2 . . . an−1n−1 ann

 ,

Ac =


0 a12 . . . a1n−1 a1n
a21 0 . . . a2n−1 a2n
... ... . . . ... ...
an1 an2 . . . an−1n−1 0

 ,

Ad = diag{a11, a22, . . . , an−1n−1, ann} =


a11 0 . . . 0 0
0 a22 . . . 0 0
... ... . . . ... ...
0 0 . . . 0 ann

 .

For each coordinate of the vector ~x(k+1) we get the formula:

x
(k+1)
i = 1

aii
·

bi − n∑
j=1
j 6=i

aij · x(k)
j

 (5.7)

for i ∈ {1, 2, 3, . . . , n}.
Let us denote matrix C = −A−1

d · Ac and vector ~d = A−1
d ·~b. Then we

obtain iterative formula of the form:

~x(k+1) = C · ~x(k) + ~d, (5.8)

where
cii = 0, cij = −aij

aii
, di = bi

aii
,

for i 6= j and i, j ∈ {1, 2, 3, . . . , n}.

Jacobi’s method does not always converge to the exact solution of the
SLE. Therefore, we have to specify the conditions under which the method
converges.
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Definition 5.31 The matrix A is called strictly row-diagonally dominant if
and only if the following formula holds:

|aii| >
n∑
j=1
i6=j

|aij| for all i = 1, 2, . . . , n. (5.9)

The matrix A is called strictly column-diagonally dominant if and only if the
following formula holds:

|ajj| >
n∑
i=1
i6=j

|aij| for all j = 1, 2, . . . , n. (5.10)

The matrix A is said to be diagonally dominant if it is row or column diag-
onally dominant.

Remark 5.11 Strict row diagonal dominance means, that for each row the
absolute value of the diagonal element is greater than the sum of absolute val-
ues of other elements in considered row. Strict column diagonal dominance
means, that for each column the absolute value of the diagonal element is
greater than the sum of absolute values of other elements in considered col-
umn.

Note that this definition uses a weak inequality “=”, and is therefore
sometimes called weak diagonal dominance. If a strict inequality “>” is used,
this is called strict diagonal dominance.

The Jacobi’s method sometimes converges even if the conditions (5.9) and
(5.10) are not satisfied.

Now we show when the Jacobi’s method converges. Using formula (5.8),
we can write the SLE in the matrix form:

~x = C · ~x+ ~d, (5.11)

where C is the iteration matrix and ~d is an iterative vector of the Jacobi’s
method. Elements of the above matrix and vector have the form:

di = bi
aii
, cij = −aij

aii
, for i 6= j, and cii = 0.

The initial system of linear equations A ·~x = ~b will be modified to the system
~x = C · ~x + ~d. Our task is to find a solution of SLE, which corresponds to
the task of finding a fixed point of mapping F :

F (~x) = C · ~x+ ~d, (5.12)
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because the solution of the initial SLE is such a vector ~x, for which the
following applies: F (~x) = ~x. Then the general iterative step is as follows:

~x(k+1) = F (~x(k)) = C · ~x(k) + ~d. (5.13)

We have a mapping F : Rn −→ Rn, where Rn is a vector space of all arranged
n-tuples of real numbers. In this vector space we can define a metric by:

d(~x, ~y) = ||~x− ~y||,

where || · || is the norm. We use the norm ||~x − ~y|| = maxi=1...n{zi : zi =
|xi − yi|}. Vector space Rn with this metric is complete. We need to check
when F is a contractive mapping. The following applies:

d(F (~x), F (~y)) = ||F (~x)−F (~y)|| = ||C ·~x+ ~d− (C ·~y+ ~d)|| = ||C · (~x−~y)|| 5

5 ||C|| · ||~x− ~y|| = ||C|| · d(~x, ~y),

where ||C|| is the matrix norm, ||C|| = maxi=1...n{si : si = ∑n
j=1 cij}. We

know that if ||C|| < 1, then the F is contraction mapping with a coefficient
of contraction α = ||C||. In this way it is ensured, that the sequence of
successive approximations of solution using formula (5.13) converges to the
fixed point of our mapping F . It remains to show how to check the condition
||C|| < 1. In general case, it can be complicated, but for the SLE is easy to
verify that condition, because it is related with diagonal dominance of the
matrix A. If the matrix A is row (column) diagonally dominant matrix, then
the Jacobi method converges.

If the condition ||C|| < 1 is satisfied, then for the error estimate for k-th
iteration applies:

||~x(k) − ~x|| 5 ||C||
1− ||C|| · ||~x

(k) − ~x(k−1)||, (5.14)

||~x(k) − ~x|| 5 ||C||k

1− ||C|| · ||~x
(0) − ~x(1)||. (5.15)

Using these estimates, we can decide when to stop the iterative process,
if we are provided by ε > 0.
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5.5.2 Gauss-Seidel’s Method
Let SLE, which has n equations and n unknowns be given:

a11 · x1 + a12 · x2 + · · ·+ a1n · xn = b1

a21 · x1 + a22 · x2 + · · ·+ a2n · xn = b2

a31 · x1 + a32 · x2 + · · ·+ a3n · xn = b3
... = ...

an1 · x1 + an2 · x2 + · · ·+ ann · xn = bn.

The Gauss-Seidel’s method is very similar to the Jacobi’s method, but dif-
fers from it in the way that the calculation of further approximations of solu-
tion always uses the most recent values of the vector ~x = (x1, x2, x3, . . . , xn)>,
that are available.

Main idea of the Gauss-Seidel method: With the Jacobi method, the
values of x(k)

i obtained in the k-th iteration remain unchanged until the entire
(k+ 1)-st iteration has been calculated. With the Gauss-Seidel’s method, we
use the new values x(k+1)

i as soon as they are known. For example, once we
have computed x(k+1)

1 from the first equation, its value is used in the second
equation to obtain the new x

(k+1)
2 , and so on.

Thus we obtain a modified iterative relation:

x
(k+1)
1 = 1

a11
·
(
b1 − a12 · x(k)

2 − · · · − a1n · x(k)
n

)
x

(k+1)
2 = 1

a22
·
(
b2 − a21 · x(k+1)

1 − a23 · x(k)
3 − · · · − a2n · x(k)

n

)
x

(k+1)
3 = 1

a33
·
(
b3 − a31 · x(k+1)

1 − a32 · x(k+1)
2 − · · · − a3n · x(k)

n

)
... = ...

x(k+1)
n = 1

ann
·
(
bn − an1 · x(k+1)

1 − an2 · x(k+1)
2 − · · · − an−1,n−1 · x(k+1)

n−1

)
.

Theorem 5.41 If a matrix A is strictly diagonally dominant (row or col-
umn), then for any choice of ~x(0), both the Jacobi’s and the Gauss-Seidel’s
methods give sequences

{
~x(k)

}∞
k=0

that converge to the unique solution of the
system A · ~x = ~b.
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5.6 Solved Examples
Example 5.1 Adjust the system of linear equations by the equivalent oper-
ations to the system with diagonally dominant matrix. Perform three steps
of Jacobi iterative method from the initial approximation ~x(0) and estimate
the upper bound of the error after the third step, if the SLE has the form:

x− 7y + 2z = 7,3
−x+ 2y + 11z = −8
18x− 11y − 8z = 21,3.

Solution:
The first step is to modify the given SLE to the diagonally dominant form.
We write the third equation q3 as the first and we move the first and second
equations by one equation below. We get the system:

18x− 11y − 8z = 21,3
x− 7y + 2z = 7,3

−x+ 2y + 11z = −8.

We subtract the second equation from the first (q1− q2) and we get the SLE
with diagonally dominant matrix:

17x− 4y − 10z = 14
x− 7y + 2z = 7,3

−x+ 2y + 11z = −8.

From this system we create a formula of Jacobi’s iterative method.

x(k+1) = 4
17y

(k) + 10
17z

(k) + 14
17

y(k+1) = 1
7x

(k) + 2
7z

(k) − 7,3
7

z(k+1) = 1
11x

(k) − 2
11y

(k) − 8
11 .
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We could rewrite this system also in the form:

x(k+1) = 0,2353y(k) + 0,5882z(k) + 0,8235
y(k+1) = 0,1429x(k) + 0,2857z(k) − 1,0429
z(k+1) = 0,091x(k) − 0,1818y(k) − 0,7273.

For the initial approximation we choose a vector: x(0) = 0,8235, y(0) =
−1,0429, z(0) = −0,7273 (right-hand side). We create a Table 5.1 in to
which we write particular approximations.

Table 5.1: Solving of SLE by the Jacobi’s iteration method.

k x(k) y(k) z(k)

0 0,8235 −1,0429 −0,7273
1 0,15031 −1,13301 −0,5200
2 0,25104 −1,169985 −0,61909
3 0,184054 −1,1839 −0,591905

We need to estimate the upper bound of the error of our solution: x(3) =
0,184054, y(3) = −1,1839, z(3) = −0,591905. We calculate the norm of matrix
||C|| = max{0,2353 + 0,5882, 0,1429 + 0,2857, 0,091 + 0,1818} =
= max{0,8235, 0,4286, 0,7788} = 0,8235 < 1.

Then for the error estimate holds:

||~x(k) − ~x|| 5 ||C||
1− ||C|| · ||~x

(k) − ~x(k−1)||,

||~x(k) − ~x|| 5 0,8235
1− 0,8235 · 0,066986 = 0,3125.

√
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5.7 Unsolved Tasks
5.1 Calculate the matrix C = 5 · A+ 1

2 ·B, if

a) A =
(

3 −4 1
−2 7 3

)
, B =

(
1 −2 7

10 4 3

)
,

b) A =

 1 1 −1
−2 0 3

0 1 1

, B =

 2 −2 4
8 4 6

−10 2 −2

.
5.2 Calculate the matrices A2, A3, and A4, if

a) A =
(

2 −1
0 3

)
,

b) A =

 1 −1 0
0 2 −1
2 −1 1

.
5.3 Calculate the matrix C = A ·B, if

a) A =


1 1 1 1
1 2 3 4
1 2 4 7
1 3 6 10

, B =


1 1 −2 −4
0 1 0 −1
−1 −1 3 6

2 1 −6 −10

,

b) A =

 1 1 1 1
1 2 3 4
1 2 4 7

, B =


1 0 −2 −2
0 1 0 −1
0 −1 3 3
0 1 0 1

,

c) A =


1 1
1 2
1 −2
0 3
−3 0

, B =
(

1 0 −2 −2
0 1 0 −1

)
,

d) A =
(

1 1 0 −1 −1
2 3 4 −3 −2

)
, B =


1 0
0 1
2 −2
−1 3

1 4

.
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5.4 Calculate the rank of the matrix A, if

a) A =


1 2 0 3
−2 0 1 1

1 2 −1 −4
−1 2 0 −3

,

b) A =


3 2 1
6 1 8
1 0 3
4 3 2

,

c) A =
(

1 0 −1 3
−6 0 6 −18

)
,

d) A =

 3 1 2 4
0 1 1 1
0 1 1 2

,

e) A =


−2 3

1 3
2

6 −9
−2 3

,

f) A =


0 2 1 0 3
1 1 0 1 0
2 1 1 0 1
3 0 2 1 1

,

g) A =


0 4 2 0 6
1 1 0 1 0
−4 −2 −2 0 −2

6 0 4 2 2
−3 3 0 1 4

,

h) A =


1 0 0 0 0
0 2 0 0 0
−4 −1 3 0 −2

0 0 2 4 2
0 0 0 4 5

.
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5.5 Verify that the matrix A is a regular (invertible) or singular, if

a) A =

 1 2 −1
2 2 1
1 4 0

,

b) A =

 1 1 1
4 0 2
4 2 3

,

c) A =


0 1 3 4
−3 2 1 −4
−1 5 2 −3

7 0 −4 1

,

d) A =


1 3 1 4
1 1 −4 1
1 1 9 2
1 2 5 5

.

5.6 Calculate by elementary operations the inverse matrix to the matrix A,
if

a) A =

 −2 −1 1
2 0 0
−2 1 1

,

b) A =

 2 −1 2
0 −1 3
3 −1 1

,

c) A =


1 0 0 0
3 1 0 0
−5 2 1 0

7 3 2 1

,

d) A =


3 0 1 0
−2 2 −2 1

0 2 −3 2
−1 1 −2 1

.
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5.7 Calculate the determinant of the matrix A, if det(A) = |A| are given

a) det (A) =

∣∣∣∣∣∣∣
1 3 −1
−1 −2 2

2 1 −1

∣∣∣∣∣∣∣,

b) det (A) =

∣∣∣∣∣∣∣
1 0 0
−5 1 0

7 4 −1

∣∣∣∣∣∣∣,

c) det (A) =

∣∣∣∣∣∣∣∣∣
1 2 3 4
−1 0 −3 −8
−1 1 0 −13

2 3 5 15

∣∣∣∣∣∣∣∣∣,

d) det (A) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 2
1 1 1 −2 1
1 1 2 1 1
1 −2 1 1 1
2 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

5.8 Using Fundamental theorem (The Frobenius theorem) show the exis-
tence or absence of solutions for the following systems of linear equations
S:

a)

x+ y − z = 1
2x+ y − z = 2

y + z = 4
x− y − 3z = −7,

b)

x+ y − z = 2
2x+ y − z = 2

y + z = 4
x− y − 3z = 7.



CHAPTER 5. LINEAR ALGEBRA 150

5.9 Solve the following systems of linear equations S:

a)

x1 + 2x2 − x3 − 2x4 = −2
2x1 + x2 + x3 + x4 = 8
x1 − x2 − x3 + x4 = 1

x1 + 2x2 + 2x3 − x4 = 4,

b)

2x1 − x2 − x3 + 3x4 = 1
2x1 − x2 − 2x4 = 4

8x1 − 4x2 + x3 − 13x4 = 19
6x1 − 3x2 − x3 − x4 = 9,

c)

2x1 + 2x2 − 2x3 + 5x4 = −6
2x1 − x2 + x3 − x4 = 1

2x1 − x2 − 3x4 = 2
4x1 − 2x2 + x3 − 4x4 = −3.

5.10 Solve the systems of linear equations by the Jacobi’s iterative method
with the precision ε = 10−3, where

18x1 − 19x2 + 2x3 = −12
−2x1 + x2 − 15x3 = 15

2x1 + 21x2 − x3 = 23.
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5.8 Results of Unsolved Tasks

5.1 a) C =
( 31

2 −21 17
2

−5 37 33
2

)
b) C =

 6 4 −3
−6 2 18
−5 6 4


5.2 a) A2 =

(
2 −1
0 3

)
, A3 =

(
2 −1
0 3

)
, A4 =

(
2 −1
0 3

)

b)A2 =

 1 −3 1
−2 5 −3

4 −5 2

, A3 =

 3 −5 4
−8 15 −8

0 −16 7

, A4 =

 11 −23 12
−24 46 −23

22 −47 23



5.3 a) C =


2 2 −5 9
6 4 −17 −28

11 6 −32 −52
15 8 −44 −71

 b) C =

 1 1 1 1
1 3 7 9
1 5 10 15

 c) C =


1 1 −2 −3
1 2 −2 −4
1 −2 −2 0
0 3 0 −3
−3 0 6 6

 d) C =
(

1 −6
11 −22

)

5.4 a) h(A) = 2 b) h(A) = 3 c) h(A) = 1 d) h(A) = 3 e) h(A) = 1 f)
h(A) = 4 g) h(A) = 4 h) h(A) = 5
5.5 a) regular b) singular c) regular d) singular

5.6 a) A−1 = 1
2 ·

 0 1 0
−1 0 1

1 2 1

 b) A−1 =

 2 −1 −1
9 −4 −6
3 −1 −2

 c) A−1 =


1 0 0 0
−3 1 0 0
11 −2 1 0
−20 1 −2 1

 d) A−1 =


1 0 −1 2
1 1 −1 1
−2 0 5 −6
−4 −1 6 −10


5.7 a) det (A) = 6 b) det (A) = −1 c) det (A) = 24 d) det (A) = 30
5.8 a) h(S) = h(Sh) = 3 b) h(S) = 4 ∧ h(Sh) = 3
5.9 a) Ω(S) = {~x ∈ R4 : ~x = (1, 2, 1, 3)} b) Ω(S) = {~x ∈ R4 : ~x =

(2, 0, 3, 0) + α · (1
2 , 1, 0, 0) + β · (1, 0, 5, 1);α, β ∈ R} c) Ω(S) = ∅

5.10 ~xk = (0, 5; 1;−1)
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Antiderivative, 97
Aplication of Definite Integrals, 103
Approximation of Function, 85

Interpolation, 85
Inverse Lagrange’s Interpolating

Polynomial, 87
Lagrange’s Interpolating Polyno-

mial, 85
Least Squares Method, 87
Normal Equations, 89

Banach’s fixed-point theorem, 142
Base of Vector Space, 120
Bisection Method, 68
Bounded Function, 27

Co-factor, 129
Constant Function, 28
Cyclometric Function, 38

Definite Integral, 100
Integral Sum, 101
Lower Limit, 101
Newton-Leibniz Formula, 102
Norm of Partition, 101
Normal Sequaence of Partitioning,

101

Partition, 101
Upper Limit, 101

Derivative, 49
Bernoulli’s rule, 53
Cauchy’s Theorem, 53
L’Hospital’s rule, 53
Lagrange’s Theorem, 53
Left-hand, 49
Mean Value Theorem, 53
Right-hand, 49
Rolle’s Theorem, 53

Determinant of Matrix, 129
Adjoint Matrix, 132
Adjugate Matrix, 132
Co-factor, 129
Expansion of Determinant, 129
Minor, 129

Dimension of Vector Space, 121

Elementary Functions, 28
arccosine (arccos), 38
arccotangent (arccotg ), 38
arcsine (arcsin), 38
arctangent (arctg ), 38
Constant, 28
cosine (cos), 36
cotangent (cotg ), 36
Cyclometric, 38
Exponential, 33
Linear, 29
Logarithmic, 34
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Polynomial, 41
Power, 32
Quadratic, 29
sine (sin), 36
tangent (tg ), 36
Trigonometric, 36

Elementary Operations, 121
Equation

Bisection Method, 68
Fixed Point Iteration Method, 71
Coefficient of Contraction, 71
Contractive Mapping, 71
Error Estimate, 72
Fixpoint of Mapping, 71

Fourier’s Condition, 76
Newton’s Method, 74
Non-Linear, 67
Root, 67
Separation of Roots, 67

Equivalent Matrix, 127
Equivalent SLE, 135
Equivalent Systems of Vectors, 121
Exponential Function, 33
Extreme Value, 27

Fixed Point Iteration Method, 71
Error Estimate, 72
Iteration Function, 73
Iterative Process, 73

Fourier’s Condition, 76
Function, 25

Approximation of Function, 85
Bounded, 27
Bounded Above, 27
Bounded Below, 27
Composite, 26
Concave, 56
Strictly, 56

Concave Down, 56
Purely, 56

Concave Up, 56
Purely, 56

Continuous, 47
from Left, 47
from Right, 47
on Closed Interval, 47
on Open Interval, 47
on Set, 47

Convex, 56
Strictly, 56

Decreasing, 26
Dependent Variable, 25
Derivative, 49
Left-hand, 49
Right-hand, 49

Domain, 25
Elementary Functions, 28, 29, 32–

34, 36, 38, 41
Even, 26
Extreme Value, 27
Global Maximum, 55
Global Minimum, 55
Graph, 25
Increasing, 26
Independent Variable, 25
Infimum, 27
Inside, 26
Integrable, 100, 101
Inverse, 26
Inverse Lagrange’s Interpolating

Polynomial, 87
Least Squares Method
System of Normal Equations, 90

Limit, 42
Local Maximum, 55
Local Minimum, 55
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Lover Bounded, 27
Maximum, 27, 55
Minimum, 27, 55
Monotonic, 26
Non-decreasing, 26
Non-increasing, 26
Odd, 26
One-To-One, 26
Outside, 26
Period, 26
Periodic, 26
Point
Extrema, 55
Inflection, 57
Inflexion, 57
Stationary, 55

Range, 25
Strictly Local Maximum, 55
Strictly Local Minimum, 55
Strictly Monotonic, 26
Supremum, 27
Upper Bounded, 27

Function arccosine (arccos), 38
Function arccotangent (arccotg ), 38
Function arcsine (arcsin), 38
Function arctangent (arctg ), 38
Function cosine (cos), 36
Function cotangent (cotg ), 36
Function sine (sin), 36
Function tangent (tg ), 36
Fundamental system of solutions of

HSLE, 135

Gauss-Seidel Methods, 143
Gaussian form of SLE, 135
Group of Vectors

Rank, 121
see also System of Vectors, 120

Indefinite Integral, 98
Integral, 97

Definite, 100
Integration by Parts, 103
Properties, 102
Substitution, 103
The Elemental Area, 103

Formulas for Integration, 98
Indefinite, 98
Integrating, 98
Integration by Parts, 99
Newton-Leibniz Formula, 102
Numerical Calculation, 105
Newton-Cotes Formulas, 105
Rectangular, 107
Simpson’s, 109
Trapezoidal, 108

Per-Partes Method see Integration
by Parts, 99

Riemann’s Integral, 100
Rules for Integration, 98
Substitution Method, 100

Integration by Parts, 99
Interpolation, 85
Interval, 24

Bounded, 24
Closed, 24
Half-closed, 24
Half-open, 24
Open, 24
Unbounded, 24

Inverse Lagrange’s Interpolating Poly-
nomial, 87

Inverse Matrix, 127

Jacobi Iterative Method
Contraction, 142
Contraction Mapping, 142
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Diagonal Dominance, 140
Diagonally Dominant Matrix, 140
Strict Column, 140
Strict Row, 140

Jacobi’s Iteration Method, 138
Jacobi’s Iterative Method, 138
Jacobi’s Method, 138

Lagrange’s Interpolating Polynomial,
85

Least Squares Method, 87
Normal Equations, 89
System of Normal Equations, 90

Limit from the Left
see Left Hand Limit, 42

Limit from the Right
see Right Hand Limit, 42

Limit of Function, 42
Bernoulli’s rule, 53
Infinite, 47
L’Hospital’s rule, 53
Left Hand Limit, 42
Real, 47
Right Hand Limit, 42

Linear Combinations of Solutions of
SLE, 135

Linear Function, 29
Logarithmic Function, 34

Mapping
Coefficient of Contraction, 72
Contraction, 72
Fixpoint, 72

Matrix, 123
Adjugate Matrix, 132
Basic Properties, 125
Column, 124
Diagonal, 124

Element of Matrix, 123
Elementary Operations, 127
Entry of Matrix, 123
Equivalence of Matrices, 127
Identity, 124
Inverse, 127
Lower Triangular, 124
Operations with Matrices, 125
Addition, 125
Equality, 125
Product, 125
Scalar Multiplication, 125
Sum, 125

Rank, 127
Rectangular, 124
Regular, 127
Row, 124
Square, 124
Symmetric, 125
Transpose, 125
type m× n, 123
Unit, 124
Upper Triangular, 124
Zero, 124

Maximum of Function, 27
Midpoint Rule, 107
Minimum of Function, 27

Newton’s Method, 74
Newton-Cotes Formulas

Closed Formulas, 105
Open Formulas, 105

Newton-Leibniz Formula, 102
Number

Absolute Value, 23
Algebraic, 21
Transcendental, 21

Number Set
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Number Line, 19
Real Line, 19

Number Sets
Complex, 17
Integer, 17
Irrational, 17
Natural, 17
Order, 20
Rational, 17
Real, 17

Order of Real Numbers, 20
Greater Then, 20
Greater Then or Equal, 20
Less Then, 20
Less Then or Equal, 20

Period of Function, 26
Polynomial Function, 41
Power Function, 32

Quadratic Function, 29

Real Numbers, 19
Associative Laws, 19
Commutative Laws, 19
Distributive Laws, 19
Order, 20
Real Number Line, 19

Rectangular Rule, 107

Separation of Roots, 67
Set

Bounded, 22
Bounded from Above, 22
Bounded from Below, 22
Infima, 22
Lower Bound, 22
Maximum, 22

Minimum, 22
Suprema, 22
Upper Bound, 22

Simpson’s Rule, 109
Surface Area of Rotating Shape, 104
System of Linear Algebraic Equations,

132
System of Linear Equations

Contradictory Equation, 135
Cramer’s Rule, 137
Elementary Operations, 135
Equivalence of SLE, 135
Frobenius Theorem, 137
Fundamental system of solutions,

135
Fundamental Theorem, 137
Gauss-Seidel Methods, 143
Gaussian form, 135
Homogeneous, 135
Jacobi’s Iterative Method, 138
Linear Combinations of Solutions,

135
Non-homogeneous, 135
Pivot, 135
Pivot of equation, 135
Rank, 135
Set of Solutions, 135
Solution, 135
Nontrivial, 135
Trivial, 135

Zero Equation, 135
System of Normal Equations, 89
System of Vectors, 120

Linearly Dependent, 120
Linearly Independent, 120
Rank, 121

Systems of Linear Equations, 132
Homogeneous, 132
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Non-Homogeneous, 132

Tangential Method
see also Equation, 74
see also Newton’s Method, 74

The Length of the Curve, 104
Theorem

Banach’s fixed-point theorem, 142
Bernoulli’s rule, 53
Cauchy, 53
Cramer’s Rule, 137
Fourier’s Condition, 76
Frobenius, 137
Fundamental, 137
L’Hospital’s rule, 53
Lagrange’s, 53
Mean Value, 53
Rolle’s, 53

Trapezoidal Rule, 108
Trigonometric Function, 36

Value of Elemental Surface Area, 103
Vector, 119

Linear Combination, 120
Non-trivial, 120
Trivial, 120

Span Set, 120
Unit, 119
Zero, 119

Vector Space, 119
Basis, 120
Dimension, 121
Elementary Operations, 121
Finite-Dimensional, 120
Infinite-Dimensional, 120
Rank of the System of Vectors,

121
Subspace, 119

Volume of Rotating Shape, 104



Lexicon – Vocabulary

English – Slovak

A
- absolute value - absolútna hodnota
- absolute value of real number - absolútna hodnota reálneho čísla
- algebraic number - algebraické číslo (algebrické)
- addition of matrices - súčet matíc
- adjoint matrix - adjungovaná matica
- adjugate matrix - adjungovaná matica
- antiderivative - antiderivácia
- approximation of function - aproximácia funkcie
- associative law - asociatívny zákon

B
- Banach fixed-point theorem - Banachova veta o pevnom bode
- Bernoulli’s rule - Bernouliho pravidlo
- base of vector space - báza vektorového priestoru
- bisection method - metóda bisekcie

- metóda poltenia intervalu
- bounded above - ohraničená zhora
- bounded below - ohraničená zdola
- bounded function - ohraničená funkcia
- bounded interval - ohraničený interval
- bounded set - ohraničená množina
- bounded set from above - ohraničená množina zhora
- bounded set from below - ohraničená množina zdola

159
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C
- Cauchy’s theorem - Cauchyho veta
- closed interval - uzavretý interval
- coeficient of contraction - koeficient kontrakcie
- co-factor -
- column matrix - stĺpcová matica
- column vector - stĺpcový vektor
- complex number - komplexné číslo
- composite function - zložená funkcia
- commutative law - komutatívny zákon
- constant function - konštantná funkcia
- concave up function - konvexná funkcia
- concave down function - konkávna funkcia
- contimuous function - spojitá funkcia
- continuous from the left - spojitá zľava
- contimuous from the right - spojitá zprava
- continuous on the closed interval - spojitá na uzavretom intervale
- continuous on the opened interval - spojitá na otvorenom intervale
- contimuous on the set - spojitá na množine
- contraction - kontrakcia
- contraction mapping - kontraktívne zobrazenie
- contradictory equation - sporná rovnica
- Cramer’s rule - Cramerovo pravislo
- cyclometric function - cyklometrické funkcie

D
- decreasing function - klesajúca funkcia
- definite integral - určitý integrál
- dependent variable - závislá premenná
- derivative -
- determinant of matrix - determinant matice
- diagonal matrix - diagonálna matica
- diagonally dominant matrix - diagonálne dominantná matica
- dimension of vector space - dimenzia vektorového priestoru
- distributive law - distributívny zákon
- domain of function - definičný obor funkcie
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E
- element of matrix - prvok matice
- elemental area - elementárna oblasť
- elementary functions - elementárne funkcie
- elementary operations - elementárne operácie
- entry of matrix - prvok matice
- equality of matrices - rovnosť matíc
- equation - rovnica
- equivalence of matrices - ekvivalencia matíc
- equivalence of SLE - ekvivalencia SLR
- equivalent matrix - ekvivalentná matica
- equivalent SLE - ekvivalentná SLR
- equivalent system of vectors - ekvivalentný systém vektorov
- error estimate - odhad chyby
- even function - párna funkcia
- expansion of determinant - rozvoj determinantu
- exponential function - exponenciálna funkcia
- extrema point of function - extrém funkcie
- extreme value - extrémna hodnota

F
- fixed point iteration method - metóda prostej iterácie
- fixpoint of mapping - pevný bod zobrazenia
- formulas for intergration - integračné vzorce
- Fourier’s condition - Fourierova podmienka
- Frobenius theorem - Frobéniova veta
- function - funkcia
- function is lower bounded - funkcia je zdola ohraničená
- function is upper bounded - funkcia je zhora ohraničená
- fundamental system of solutions - fundamentálny systém riešení
of HSLE HSLR

- fundamental theorem - základná (fundamentálna) veta

G
- Gaussian form of SLE - Gaussov tvar SLR
- Gauss-Seidel Method - Gaussova-Seidelova metóda
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- global minimum - globálne minimum
- global maximum - globálne maximum
- graph of function - graf funkcie
- greater than - väčší než
- greater then or equal - väčší alebo rovný než
- group of vectors - množina vektorov

H
- half-closed interval - polo-uzavretý interval
- half-open interval - polo-otvorený interval
- homogeneous SLE - homogénna SLR

I
- identity matrix - jednotková matica
- increasing function - rastúca funkcia
- indefinite integral - neurčitý integrál
- independent variable - nezávislá premenná
- infimum - infímum
- inflection point of funkction - inflexný bod funkcie
- inside function - vnútorná zložka funkcie
- integer (number) - celé číslo
- integrable function - integrovateľná funkcia
- integral - integrál
- integrating - integrovanie
- integration by parts - integrovanie metódou per-partes
- integration by substitution method - integrovanie substitučnou mtódou
- interpolation - interpolácia
- interval - interval
- inverse function - inverzná funkcia
- inverse Lagrange’s interpolating - inverzný lagrangeov interpolačný
polynomial polynóm

- inverse matrix - inverzná matica
- integral sum - integrálny súčet
- irrational number - irecionálne číslo
- iteration function - iteračná funkcia
- iterative process - iteračný proces
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J
- Jacobi iterative method - Jacobiho iteračná metóda

K
L
- Lagrange’s interpolating polynomial - Lagrangeov interpolačný polynóm
- Lagrange’s theorem - Lagrangeova veta
- least squared method - metóda najmenších štvorcov
- left-hand derivative - derivácia zľava
- left-hand limit - limita zľava

(ľavostranná limita)
- length of the curve - dĺžka krivky
- less then - menší než
- less then or equal - meší alebo rovný než
- L’Hospital’s rule - L’Hospitalovo pravidlo
- limit of function - limita funkcie
- linear combination - lineárna kombinácia
of solutions of SLE riešení SLR

- linear combination of vectors - lineárny kombinácia vektorov
- linear function - lineárna funkcia
- linearly dependent - lineárne závislý
- linearly independent - lineárne nezávislý
- local maximum - lokálne maximum
- local minimum - lokálne minimum
- logarithmic function - logaritmická funkcia
- lower bound of function - dolné ohraničenie funkcie
- lower limit - dolná hranica
- lower triangular matrix - dolná trojuholníková matica

M
- maximum of function - maximum funkcie
- minimum of function - minimum funkcie
- mean value theorem - veta o strednej hodnote
- minor -
- monotonic function - monotónna funkcia
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N
- natural number - prirodzené číslo
- Newton-Cotes formulas - Newton-Cotesove vzorce
- Newton-Leibniz formula - Newtonova Leibnizova formula
- Newton’s method - Newtonova metóda
- non-decreasing function - neklesajúca funkcia
- non-homogeneous SLE - nehomogánna SLR
- non-increasing function - nerastúca funkcia
- non-linear equation - nelineárna rovnica
- non-trivial linear combination - netriviálna lineárny kombinácia
- non-trivial solution of HSLE - netriviálne riešenie HSLR
- normal equations - sústava normálnych rovníc
- norm of partition - norma delenia
- normal sequaence of partitioning - postupnosť normálnych delení
- number - číslo
- number line - číselná os
- number set - číselná množina
- numerical calculation - numerický výpočet

O
- odd function - nepárna funkcia
- one-to-one function - prostá funkcia
- opened interval - otvorený interval
- operations with matrices - operácie s maticami
- order of numbers - usporiadanie čísel
- order of real numbers - usporiadanie reálnych čísel
- outside function - vonkajšia zložka funkcie

P
- partition - delenie
- period of funkction - perióda funkcie
- periodic function - periodická funkcia
- pivot of equation - vedúci člen rovnice
- polynomial function - polynomická funkcia
- power function - mocninová funkcia
- product of matrices - súčin matíc
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Q
- quadratic function - kvadratická funkcia

R
- range of function - obor hodnôt funkcie
- rank - hodnosť
- rank of matrix - hodnosť matice
- rational number - racionálne číslo
- real line - os reálnych čísel
- real number - reálne číslo
- rectangular matrix - obdĺžniková matica
- rectangular method - obdĺžniková metóda
- regular matrix - regulárna matica
- Rieman’s integral - Riemanov integrál
- right-hand derivative - derivácia zprava
- right-hand limit - limita zprava

(pravostranná limita)
- root of equation - koreň rovnice
- row matrix - riadková matica
- row vector - riadkový vektor
- rules for integration - pravidlá integrovania

S
- scalar multiplication - násobenie skalárom
- Simpson’s method - Simpsonová metóda
- separation of roots - separácia koreňov
- set of solutions - množina riešení
- solution - riešenie
- solution of equation - riešenie rovnice
- span set of vectors - lineárny obal množiny vektorov
- square matrix - štvorcová matica
- stationary point of function - stacionárny bod funkcie
- strictly concave up - rýdzo konvexná
- strictli concave down - rýdzo konkávna
- strictly monotonic function - rýdzo monotónna funkcia
- subspace - podpriestor
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- supremum - suprémum
- sum - súčet (suma)
- surface area of Rotating Shape - povrch rotačného telesa
- symetric matrix - symetrická matica
- system of linear algebraic - systém lineárnych algebraických
equations rovníc

- system of linear equations - sústava lineárnych rovníc
- system of vectors - systém vektorov

T
- transcendental number - transcendentálne číslo
- transpose matrix - transponovaná matica
- trapezoidal method - lichobežniková metóda
- trigonometric functions - trigonometrické funkcie
- trivial linear combination - triviálna lineárna kombinácia
- trivial solution of HSLE - triviálne riešenie HSLR

U
- unit matrix - matica jednotiek
- unit vector - vektor jednotiek
- upper bound of funkction - horné ohraničenie funkcie
- upper limit - horná hranica
- upper triangular matrix - horná trojuholníková matica
- unbounded interval - neohraničený interval

V
- value of elemental area - veľkosť elementárnej oblasti
- value of surface area - veľkosť plochy
- vector - vektor
- vector space - vektorový priestor
- volumen of rotating shape - objem rotačného telesa

W
Z
- zero equation - nulová rovnica
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- zero matrix - nulová matica
- zero vector - nulový vektor (origin)
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