Technical University of Košice

Faculty of Electrical Engineering and Informatics

MATHEMATICS 3

University Textbook

Technical University of Košice
Faculty of Electrical Engineering and Informatics Department of Mathematics and Theoretical Informatics

Mathematics 3

Štefan Berežný
and
Daniela Kravecová

Go Back

Košice 2014

Mathematics 3

First Edition

Reviewed by: prof. RNDr. Marie Demlová, CSc. prof. RNDr. Ján Plavka, CSc. prof. RNDr. Michal Tkáč, CSc.

Editor: Technical University of Košice
Faculty of Electrical Engineering and Informatics
ISBN: $\quad 978-80-553-1791-5$

For scientific and linguistic parts of this textbook is its author responsible.
The manuscript did not undergo editorial or proofreading.

Preface

 At the end oftheir results.

The areas of the mathematics optimization are represented in this textbook by the theory, examples, and basic information from operational analysis and simplex method, as this required course of study Applied Informatics.

This textbook is available on CD and on the web site DMTI FEEI TUKE (KMTI FEI TU) and Moodle system, which is managed by the FEEI TUKE. examples and unsolved tasks for subject Mathematics 3 for bachelor's degrees students at Applied Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice. The textbook consists of six chapters. Each chapter is divided into sub-chapters in particular areas of Mathematics. At the end of each chapter are subsections Solved Examples, Exercises and

Contents

Preface4
Contents 8
Page 5 of 201
List of abbreviations and symbols 9
List of Figures 12
List of Tables 15
1 Introduction to Linear Programming 16
1.1 Historical Introduction 16
1.2 Mathematical Programming 17

Go Back

Full Screen
2 Linear Programing Problem 22
2.1 Basic Concepts 22
2.2 Selected Types of Linear Programming Problems 27
2.2.1 The Activity Analysis Problem 28
2.2.2 The Diet Problem 29
2.2.3 The Cutting Plans 31
2.2.4 The Transportation Problem 32
2.2.5 The Assignment Problem 34
2.3 Linear Programming Problem in \mathbb{R}^{2} 36
2.4 The Introduction to Convex Analysis 49
2.5 The Standard Form of Linear Programming Problem 54
2.5.1 Conversions of LPP Forms 56
2.6 The Basis Feasible Solution of Linear Programming Problems 58
2.7 Solved Examples 60
2.8 Exercises 80
2.9 Solutions 86
3 Linear Programming Duality 94
3.1 The Dual to Linear Programming Problem 94
3.2 Primal-Dual Solutions 98
3.3 Solved Examples 100
3.4 Exercises 108
3.5 Solutions 112

4 Simplex Method 114
4.1 Simplex Method - Algorithm 114
4.2 Two-Phase Algorithm of Simplex Method 118
4.3 Procedure Simplex . 120
4.4 Solved Examples . 122
4.5 Exercised . 140
4.6 Solutions . 144

5 Dual Simplex Method 146
5.1 Dual Simplex Method - Algorithm 146
5.2 Procedure Dual Simplex . 148
5.3 Solved Examples . 150
5.4 Exercises . 154
5.5 Solutions . 156

6 Integer Linear Programing Problem 157
6.1 Formulation of the Integer Linear Programing Problem 157
6.2 Integer Linear Programing Problem in \mathbb{R}^{2}. 160
6.3 Gomory's Fractional Algorithm 173
6.4 Solved Examples . 175
6.5 Exercises . 183
6.6 Solutions . 186

Register 191
Lexicon 199
Bibliography 199

Title Page

Contents

Page 8 of 201

Go Back

Full Screen

List of Abbreviations and Symbols

MPP - mathematical programming problem
LPP - linear programming problem
$\boldsymbol{a}_{\boldsymbol{i}}-i$-th row of the matrix A
Go Back
$A_{j}-j$-th column of the matrix A
F - set of feasible solutions of LPP
$\boldsymbol{x}^{\text {opt }}$ - optimal solution of LPP
$f^{\text {opt }}(x)$ - value of the objective function at the optimal solution
$\operatorname{conv}(M)$ - convex hull of the set M
$e x(M)$ - set of extreme points of the set M
$B(i)$ - index of the matrix \boldsymbol{A} column which represent i-th component of base \mathcal{B}

BS - basis solution
P - primary linear programming problem
D - dual linear programming problem
F_{P} - set of feasible solutions of primary linear programming problem
F_{D} - set of feasible solutions of dual linear programming problem
ILPP - integer linear programming problem
$\boldsymbol{x}_{r}^{o p t}$ - optimal solution of relaxation of integer linear programming problem
$\overline{B C}$ - line segment $B C$
$\{a\}$ - fractional part of a
$\lfloor a\rfloor$ - lower integer part of a
TP - transportation problem

List of Figures

2.1 Constraints $\left(p_{1}, p_{2}, p_{3}\right)$ and the set of feasible solutions F in \mathbb{R}^{2}. 39
2.2 The contour line of the objective function. 40
2.3 Optimum - the point at which the objective function has the maximum. 41
2.4 The set of feasible solutions 42
2.5 Counter lines of objective functions and the optimal solution. 44
2.6 The feasible set, the counter line of the objective function and optimal solutions 45
2.7 The feasible set. 47
2.8 Example of a convex set (a) and a nonconvex set (b) in \mathbb{R}^{2} 49
2.9 Intersections of pairs of convex sets in \mathbb{R}^{2}. 50
2.10 Convex sets and their sets of corner points 52
2.11 Possible Cutting Plans 68


```
Page 11 of 201
```

 Go Back
 Full Screen
Close
3.1 Constraints for dual LPP. 104
3.2 The graphic solution of the dual. 106
6.1 The graphical representation of the ILPP - example 6.1. 161
6.2 The graphical representation of the ILPP - example 6.2. 162
6.3 The graphical representation of the ILPP - example 6.3. 164
6.4 The graphical representation of the ILPP - example 6.4. 165
6.5 The graphical representation of the ILPP - example 6.5. 167
6.6 The graphical representation of the ILPP - example 6.6. 168
6.7 The graphical representation of the ILPP - example 6.7. 170
6.8 The graphical representation of the ILPP - example 6.8. 171
6.9 The graphical representation of the ILPP - example 6.9. 172

List of Tables

1.1 Optimization problem. 19
1.2 Table of requirements and capabilities. 20
2.1 Information about the feasible set and its cardinality 48
2.2 Summary Table - the weights, capacities and profits. 61
2.3 Summary Table - capacities and profits 64
2.4 Summary Table - mixing problem 66
2.5 List of distances between cities 69
2.6 The time data for the assignment problem. 72
3.1 Relations between primal (P) and dual (D) task of LPP. 97
3.2 Overview of the different options for solving a pair $P-D$. 99
4.1 Simplex Method - Simplex Table 116
4.2 Simplex method - Initial table 123
4.3 Simplex method - First iteration 124
4.4 Simplex method - Second iteration 125
4.5 Simplex method - Third iteration 126
4.6 Simplex method - Optimal table 126
4.7 Simplex method - The filled simplex table 127
4.8 Simplex method - Initial table 128
4.9 Simplex method - First iteration 128
4.10 Simplex method - Optimal simplex table 129
4.11 Simplex method - Filled in the simplex table 130
4.12 Simplex method - Modified table 131
4.13 Simplex method - Initial table 131
4.14 Simplex method - Filled in the simplex table 133
4.15 Simplex method - Artificial LPP 134
4.16 Simplex method - Artificial LPP 134
4.17 Simplex method - Artificial LPP 135
4.18 Simplex method - Artificial LPP 135
4.19 Simplex method - Second phase 136
4.20 Simplex method - Second phase - Initial step 136
4.21 Simplex method - Initial table 138
4.22 Simplex method - Artificial task 138
4.23 Simplex method - Artificial task 139
4.24 Simplex method - Artificial task 139
5.1 Determining the pivot in the primary and the dual simplex method algorithm. 148
5.2 Dual simplex method - First step 151
5.3 Dual simplex method - Second step. 151
5.4 Dual simplex method - Third step. 152
5.5 Dual simplex method - Fourth step 153
5.6 Dual simplex method - Fifth step. 153
6.1 Information about a relaxation of ILPP and ILPP. 173
6.2 Simplex method - relaxation of ILPP. 177
6.3 Simplex method - relaxation of ILPP. 177
6.4 Simplex method - relaxation of ILPP. 179
6.5 Simplex method - relaxation of ILPP. 179
6.6 Simplex method - relaxation of ILPP 180
6.7 Simplex method - relaxation of ILPP. 181
6.8 Simplex method - Gomory cut - step 1. 181
6.9 Simplex method - Gomory cut - step 2. 182

Chapter 1
 1

Introduction to Linear Programming

1.1. Historical Introduction

Linear programming is a relatively young mathematical discipline, dating from the invention of the simplex method by G. B. Dantzig in 1947. Historically, development in linear programming is driven by its applications in economics and management. Dantzig initially developed the simplex method to solve U.S. Air Force planning problems, and planning and scheduling problems still dominate the applications of linear programming. One reason that
linear programming is a relatively new field is that only the smallest linear programming problems can be solved without a computer.

1.2. Mathematical Programming

Methods of mathematical programming are some of the frequently used meth-
ods to optimize production and other decision-making processes. They allow to transform realistic processes to mathematical models and then to solve these models by using the mathematical tools. So the real process is transformed into mathematical programming problem - MPP.

Parts of the mathematical programming problem are:

1. objectives - determining of objectives is dependent on the process. They are the optimization (maximization or minimization) criteria. These can be, for example:
```
Go Back
```

- profit maximization,
- maximization of efficiency equipment,
- maximization productivity,
- maximization the quantities of material,
- minimization of production costs,
- waste minimization,
- minimization of kilometers and other.

2. Constraints - they refer to conditions and limitations, so the process is working. It may be one but also a number of conditions. For example:

- material resources,
- capacity of the production facilities,
- workforce capacity,
- limited lifetime of machines,
- financial resources,
- sales opportunities,
- suppliers capacity ,
- transport capacity
- requirements of customers,
- storage capacity and other.

Objectives and conditions can be expressed by using mathematical tools, which we call a mathematical model.

Objectives are functions, which we are trying to minimize or maximize.
Constraints are given by equalities, inequalities or by system of equalities
and inequalities.They may also be linear or nonlinear equalities and inequalities.

Table 1.1: Optimization problem.

objectives	$f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow \min (\max)$
	$f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow \min (\max)$
	$f_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow \min (\max)$
main constraints	$g_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \geq=0$
	$g_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \geq=0$

The mathematical model of MPP is illustrated by the following example.

Example 1.1. A carpenter makes 2 products A and B. Each piece of A can be sold for a profit of $65 €$ and each piece of B for a profit of $48 €$. The carpenter can afford to spend up to 90 hours per week working and takes four hours to make A and nine hours to make B. The final treatment of products takes two hours for A and one hour for B and the carpenter can afford to

Contents

	product A	product B	capacities
working time	4	9	90
final treatment time	2	1	20
storace place	1	1	12
profit	65	48	-

Table 1.2: Table of requirements and capabilities.

The process can be expressed by the following mathematical model

$$
\begin{gathered}
f\left(x_{1}, x_{2}\right)=65 x_{1}+48 x_{2} \rightarrow \max \\
4 x_{1}+9 x_{2} \leq 90 \\
2 x_{1}+x_{2} \leq 20 \\
x_{1}+x_{2} \leq 12 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Title Page

Contents

Chapter 2

Linear Programing Problem

2.1. Basic Concepts

Definition 2.1. Let function $f(\boldsymbol{x})$ of n variables and $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. Then $f(\boldsymbol{x})$ is said to be linear if it satisfies two conditions:
(1) $f(\boldsymbol{x}+\boldsymbol{y})=f(\boldsymbol{x})+f(\boldsymbol{y}) \quad$ additivity,
(2) $f(\alpha \boldsymbol{x})=\alpha f(\boldsymbol{x}) \quad$ proportionality,
where $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$.

Corollary 2.1. All linear functions are on the form

$$
f(\boldsymbol{x})=\sum_{j=1}^{n} c_{j} \cdot x_{j} \quad \text { where } \quad c_{j} \in \mathbb{R}, \quad \forall j \in\{1,2, \ldots, n\}
$$

Definition 2.2. A linear programming problem is a problem of maximizing or minimizing a linear objective function of n real variables

$$
\begin{equation*}
f(\boldsymbol{x})=c_{1} \cdot x_{1}+c_{2} \cdot x_{2}+\cdots+c_{n} \cdot x_{n} \rightarrow \min (\max), \tag{2.1}
\end{equation*}
$$

whose values are restricted (or constrained) to satisfy relations each of which is of the type:

$$
\begin{align*}
a_{i 1} \cdot x_{1}+a_{i 2} \cdot x_{2}+\cdots+a_{i n} \cdot x_{n} & \leq b_{i}, \\
a_{i 1} \cdot x_{1}+a_{i 2} \cdot x_{2}+\cdots+a_{i n} \cdot x_{n} & \geq b_{i}, \quad \text { for } i=1, \ldots, k-1 \\
a_{i 1} \cdot x_{1}+a_{i 2} \cdot x_{2}+\cdots+a_{i n} \cdot x_{n} & =b_{i}, \quad \text { for } i=l, \ldots, m-1 \\
x_{i} & \leq 0 \quad \forall i \in N_{1} \\
x_{i} & \geq 0 \quad \forall i \in N_{2} \\
x_{i} & \in \mathbb{R} \quad \forall i \in N_{3} \quad x_{i} \text { is unbounded variable, where } \\
1 \leq k & \leq l \leq m, \\
N_{1} \cup N_{2} \cup N_{3} & =\{1,2, \ldots, n\} \tag{2.2}
\end{align*}
$$

$x_{1}, x_{2}, \ldots, x_{n}$ - variables,
$c_{1}, c_{2}, \ldots, c_{n}$ - the objective function coefficients, $a_{11}, a_{12}, \ldots, a_{m n}$ - the coefficients of constraints, $b_{1}, b_{2}, \ldots, b_{m}$ - the coefficients of right sides.

By using Corollary 2.1 LPP can be given by:

$$
f(\boldsymbol{x})=\sum_{j=1}^{n}\left(c_{j} \cdot x_{j}\right) \rightarrow \min (\max)
$$

$$
\begin{aligned}
& \sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right) \leq b_{i}, \quad \text { for } i=1, \ldots, k-1 \\
& \sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right) \geq b_{i}, \quad \text { for } i=k, \ldots, l-1 \\
& \sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right)=b_{i}, \quad \text { for } i=l, \ldots, m \\
& x_{j} \leq 0 \quad \forall j \in N_{1} \\
& x_{j} \geq 0 \quad \forall j \in N_{2} \\
& x_{j} \in \mathbb{R} \quad \forall j \in N_{3} .
\end{aligned}
$$

The simplified symbolic notation:

$$
\begin{gathered}
f(\boldsymbol{x})=\sum_{j=1}^{n}\left(c_{j} \cdot x_{j}\right) \rightarrow \min (\max) \\
\sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right)\left\{\begin{array}{l}
\leq \\
= \\
\geq
\end{array}\right\} b_{i} \quad i=1,2, \ldots, m \\
x_{j} \leq \geq 0 \quad j=1,2, \ldots, n .
\end{gathered}
$$

The vector notation:

$$
f(\boldsymbol{x})=\boldsymbol{c}^{\top} \cdot \boldsymbol{x} \rightarrow \min (\max)
$$

$$
\sum_{i=1}^{m}\left(\boldsymbol{a}_{\boldsymbol{i}} \cdot \boldsymbol{x}\right)\left\{\begin{array}{l}
\leq \\
= \\
\geq
\end{array}\right\} \boldsymbol{b}
$$

$$
x_{j} \leq \geq 0 \quad j=1,2, \ldots, n, \text { where }
$$

$$
\begin{aligned}
& \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top}, \boldsymbol{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{\top}, \\
& \boldsymbol{a}_{\boldsymbol{i}}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right), \boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{m}\right)^{\top} .
\end{aligned}
$$

The matrix notation:

$$
\begin{aligned}
& f(\boldsymbol{x})=\boldsymbol{c}^{\top} \cdot \boldsymbol{x} \rightarrow \min (\max) \\
& A \cdot \boldsymbol{x}\left\{\begin{array}{l}
\leq \\
= \\
\geq
\end{array}\right\} \boldsymbol{b} \\
& x_{j} \leq \geq 0, \quad j=1,2, \ldots, n,
\end{aligned}
$$ and n columns:

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \tag{2.3}\\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

Remark 2.1. Denote i-th row of the matrix \boldsymbol{A} by $\boldsymbol{a}_{\boldsymbol{i}}$ and j-th column of the matrix A by A_{j}.

Definition 2.3.

- A vector $\boldsymbol{x} \in \mathbb{R}^{n}$ for the LPP is said to be feasible if it satisfies the corresponding constraints.
- The set of all feasible vectors is called the constraint set F.
- A linear programming problem is said to be feasible if the constraint set is not empty; otherwise it is said to be infeasible.

2.2. Selected Types of Linear Programming Problems

The linear programming problems offer a large variety of applications in practice. The following structure describes only some of them and examples, which are provided to them, illustrate very simplified procedures.

2.2.1. The Activity Analysis Problem

Linear programming problems arise naturally in production planning. There are n products that a company may product, using the available supplies of m resources (labour, finance, hours, steel, etc.). The company knows the amount of $i-$ th resource which is needed to produce a unit of j-th product. It is also known, what is the profit from the sale of a unit quantity of each product and the available supply of resources are known too.

The task is to schedule production plan so that the profit will be maximum with respect the capacity of the resources.

Mathematical model:

$$
\begin{aligned}
& f(\boldsymbol{x})=\sum_{j=1}^{n}\left(c_{j} \cdot x_{j}\right) \rightarrow \max \\
& \sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right) \leq b_{i}, \quad i=1,2, \ldots, m \\
& x_{j} \geq 0, \quad j=1,2, \ldots, n
\end{aligned}
$$

that
n - number of products,
m - number of resources,
x_{j} - amount of produced units of the $j-$ th product,
c_{j} - price/profit from a unit quantity of $j-$ th product,
$a_{i j}$ - amount of i-th resource used in production of a unit of j-th product,
b_{i} - available supply of i-th resource.

See examples 2.5 and 2.6 .

2.2.2. The Diet Problem

 quantities of the nutrients, N_{1}, \ldots, N_{m}, that are essential to be a good diet. Let us know the minimum (maximum) daily requirement of $i-$ th nutrient, the price per unit of $j-$ th food and the amount of $i-$ th nutrient contained in one unit of j-th food. The problem is to supply the required nutrients at minimum cost.The general mathematical formulation of the problem can be written as follows:

$$
\begin{aligned}
f(\boldsymbol{x}) & =\sum_{j=1}^{n}\left(c_{j} \cdot x_{j}\right) \rightarrow \min \\
\sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right) & \geq b_{i}, \quad i=1,2, \ldots, m \\
x_{j} & \geq 0, \quad j=1,2, \ldots, n
\end{aligned}
$$

for
n - number of different types of food,
m - number of the nutrients,
x_{j} - amount of j-th food used in the diet,
c_{j} - price per unit of j-th food,
$a_{i j}$ - amount of $i-$ th nutrient contained in one unit of $j-$ th food,
b_{i} - minimum (maximum) amount of $i-$ th nutrient which is required.

2.2.3. The Cutting Plans

We have a certain amount of bars of a given length. We need to cut fixed quantities of a required shorter lengths of them. The target is to establish such a cutting plan - a way in which the bars are to be cut (setting of cutting blades) - to ensure the required amount of bars with required length and waste to a minimum. Waste should be minimized.

The mathematical formulation of the problem can be written as follows:

$$
\begin{aligned}
f(\boldsymbol{x}) & =\sum_{j=1}^{n}\left(c_{j} \cdot x_{j}\right) \rightarrow \min \\
\sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right) & \geq b_{i}, \quad i=1,2, \ldots, m \\
x_{j} & \geq 0, \quad j=1,2, \ldots, n
\end{aligned}
$$

for
n - number of different ways of cutting bars (the number of setting options for cutting blades),
m - number of different lengths of bars, we want to cut,
x_{j} - number of pieces of original bars which are cut by j-th way,
c_{j} - waste arising from cutting one bar by j-th way,
$a_{i j}$ - number of bars with i-th length cut in j-cutting plan,
b_{i} - required number of bars of i-th length.

See example 2.8.

2.2.4. The Transportation Problem

There are n providers (companies, contractors, ports,...) that supply a certain commodity and m customers (consumers, markets, clients,...) to which this commodity is taken. Each provider has a certain amount of commodity - capacity and each customer has a specific requirement for the quantity of commodity. The cost of transporting a unit of the commodity are known for each pair of provider - customer. The task is to establish a plan of transportation that of which costs will be as small as possible. (We assume balanced system, i. e. requirements of customers will be the same as the capacity of providers.)

The general mathematical formulation of the problem can be written as follows:

$$
\begin{aligned}
f(\boldsymbol{x}) & =\sum_{i=1}^{m} \sum_{j=1}^{n}\left(c_{i j} \cdot x_{i j}\right) \rightarrow \min \\
\sum_{j=1}^{n} x_{i j} & =a_{i}, \quad i=1,2, \ldots, m \\
\sum_{i=1}^{m} x_{i j} & =b_{j}, \quad j=1,2, \ldots, n \\
x_{i j} & \geq 0, \quad \text { pre } i=1,2, \ldots, m ; \quad j=1,2, \ldots, n
\end{aligned}
$$

that
n - number of providers,
m - number of customers,
$x_{i j}$ - number of units of commodity to be transported from the i-th provider to the j-th customer,
$c_{i j}$ - cost of transporting of the commodity from the i-th provider to the j-th customer,
a_{i} - capacity of the i-th provider,
b_{j} - requirement of the j-th customer.

The balancing condition:

$$
\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}
$$

See example 2.9.

2.2.5. The Assignment Problem

The assignment problem is one of the special cases of transportation problems. The goal of the assignment problem is to minimize the cost or time of completing a number of sources by a number of destinations. An important characteristic of the assignment problem is one in which the number of sources is equal to the number of destinations.

We have n sources (people, machines, laborers,...) and n destinations (jobs, places, tasks,...) to be assigned to n sources. No source can either be idle or be assigned to more than one destination. Every pair of "source destination" has a rating expressed by the coefficient $c_{i j}$. This rating may be cost, satisfaction, penalty involved or time taken to finish the job. Thus, the assignment problem is to find such "source - destination" combinations that optimize the sum of ratings among all. Variables will state whether the source is assigned to a given destination or not.

Thus:

$$
x_{i j}= \begin{cases}1, & \text { if the } i \text {-th source is assigned to the } j \text {-th destination, } \\ 0, & \text { if the } i \text {-th source is not assigned to the } j \text {-th destination. }\end{cases}
$$

Since the assignment problem is one of the special cases or modification of the transportation problem, the general mathematical formulation of the assignment problem is similar to the mathematical model of the transportation problem:

$$
\begin{aligned}
f(\boldsymbol{x}) & =\sum_{i=1}^{m} \sum_{j=1}^{n}\left(c_{i j} \cdot x_{i j}\right) \rightarrow \max \\
\sum_{j=1}^{n} x_{i j} & =1, \quad i=1,2, \ldots, n \\
\sum_{i=1}^{m} x_{i j} & =1, \quad j=1,2, \ldots, n \\
x_{i j} & \in\{0,1\} \quad \text { for } i, j=1,2, \ldots, n
\end{aligned}
$$

that
n - number of sources and also the number of destinations,
$x_{i j}$ - variable that indicates whether the i-th source is assigned to the j-th destination or not,
$c_{i j}$ - coefficient, which expresses rating of the pair " i-th source - j-th destination".

See example 2.10.

2.3. Linear Programming Problem in \mathbb{R}^{2}

The general mathematical formulation of the linear problem with two decision variables can be written as following:

$$
\begin{aligned}
& f(\boldsymbol{x})=c_{1} \cdot x_{1}+c_{2} \cdot x_{2} \rightarrow \min (\max) \\
& a_{i 1} \cdot x_{1}+a_{i 2} \cdot x_{2} \leq b_{i}, \quad \text { for } i=1, \ldots, k-1 \\
& a_{i 1} \cdot x_{1}+a_{i 2} \cdot x_{2} \geq b_{i}, \quad \text { for } i=k, \ldots, l-1 \\
& a_{i 1} \cdot x_{1}+a_{i 2} \cdot x_{2}=b_{i}, \quad \text { for } i=l, \ldots, m \\
& x_{1}, x_{2} \leq \geq 0, \\
& 1 \leq k \leq l \leq m
\end{aligned}
$$

Since all constraints are given by linear equations or inequalities, so they can be illustrated by lines or half-planes in the plane. The set of feasible solutions F will be the intersection of these lines and half-planes.

Example 2.1. Let the linear programming problem be given by the following:

$$
\begin{aligned}
f(\boldsymbol{x})=66 x_{1}+48 x_{2} & \rightarrow \max \\
4 x_{1}+9 x_{2} & \leq 90 \\
2 x_{1}+x_{2} & \leq 20 \\
x_{1}+x_{2} & \leq 12 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Draw the set of feasible solutions and the optimal solution of the LPP graphically.
Solution:
Because all constraints are in the inequality form, we can draw them as halfplanes p_{1}, p_{2} a p_{3}.

$$
\begin{aligned}
4 x_{1}+9 x_{2} \leq 90 & \ldots p_{1} \\
2 x_{1}+x_{2} \leq 20 & \ldots p_{2} \\
x_{1}+x_{2} \leq 12 & \ldots p_{3}
\end{aligned}
$$

```
Go Back
```

We obtain the set of feasible solutions as their intersection and also the intersection of half-planes expressing nonnegativity conditions (figure 2.1).

We draw the contour line of the objective function by following way: Let $f(\boldsymbol{x})=0$, it means, in our example, to draw the line $p: 66 x_{1}+48 x_{2}=0$ and to denote in which direction the value of the objective function increases (figure 2.2).

We are looking for the furthest point of the set of feasible solutions F in the denoted direction (figure 2.2). It is the intersection of lines represented by the equations:

$$
2 x_{1}+x_{2}=20 ; \quad x_{1}+x_{2}=12
$$

We gain the optimal solution coordinates by resolution of this equation system and we gain the optimal value of the objective function as the value of the objective function for the optimal solution:

$$
\begin{aligned}
x^{o p t} & =(8,4)^{\top} \\
f^{o p t}\left(\boldsymbol{x}^{o p t}\right) & =720 .
\end{aligned}
$$

Example 2.2. Let constraints of LPP be given by the following:

$$
\begin{aligned}
2 x_{1}+x_{2} & \geq 6 \\
x_{1}+2 x_{2} & \geq 6 \\
4 x_{1}-x_{2} & \leq 15 \\
x_{1} & \geq 0
\end{aligned}
$$

Draw the set of feasible solutions and the optimal solution of the LPP graphically and find the optimal solution if the objective function is:
a) $f_{1}(\boldsymbol{x})=x_{1}+2 x_{2} \rightarrow \max$,

Figure 2.1: Constraints $\left(p_{1}, p_{2}, p_{3}\right)$ and the set of feasible solutions F in \mathbb{R}^{2}.

Figure 2.2: The contour line of the objective function.

Figure 2.3: Optimum - the point at which the objective function has the maximum.
b) $f_{2}(\boldsymbol{x})=-x_{1}+3 x_{2} \rightarrow$ min.

Solution:

By the similar way as in the previous example 2.1, we draw the set of feasible solutions F as the intersection of half-planes. We can see on the figure 2.4, the set of feasible solutions is unbounded.

Figure 2.4: The set of feasible solutions.

Counter lines of objective functions $f_{1}(\boldsymbol{x})$ and $f_{2}(\boldsymbol{x})$ are drawn on figure 2.5. We can not find the optimum of $f_{1}(\boldsymbol{x})$ because the set is unbounded in the direction of maximization of the objective function, thus, the LPP is feasible, but unbounded.
Though, the objective function $f_{2}(\boldsymbol{x})$ has the optimal solution on the same feasible set. We compute the optimal solution and objective function value in this solution analogously as in the example 2.1:

$$
\begin{aligned}
x^{o p t} & =(4,1)^{\top} \\
f_{2}^{o p t}\left(\boldsymbol{x}^{o p t}\right) & =-1
\end{aligned}
$$

Example 2.3. Let the linear programming problem be given as follow: Draw the feasible set and the optimal solution of the LPP graphically.

$$
\begin{aligned}
f(\boldsymbol{x})=-6 x_{1}+x_{2} & \rightarrow \min \\
6 x_{1}-x_{2} & \leq 24 \\
7 x_{1}+2 x_{2} & \geq 14 \\
4 x_{1}+9 x_{2} & \leq 45 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution:

Figure 2.5: Counter lines of objective functions and the optimal solution.

On the figure 2.6, there are drawn the feasible set and the counter line of the objective function as line $-6 x_{1}+x_{2}=0$. We are approaching to the optimal solution by moving to the right. Since the boundary of the feasible set is given by condition $6 x_{1}-x_{2} \leq 24$, this boundary is parallel to the contour line. The optimal solutions are all the points of the line segment $\overline{B C}$ and the number of optimal solutions is infinite. The value of the objective function for any of them is the same.

Figure 2.6: The feasible set, the counter line of the objective function and optimal solutions.

Example 2.4. A linear programming problem is given bellow. Draw the feasible set and the optimal solution of the LPP graphically.

$$
\begin{aligned}
f(\boldsymbol{x})=x_{1}+x_{2} & \rightarrow \min \\
x_{1}+x_{2} & \leq 1 \\
2 x_{1}+x_{2} & \geq 4 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Contents

Figure 2.7: The feasible set.

Observation:

We might have noticed in the previous examples that the feasible set may be empty, non-empty bounded and non-empty unbounded. The number of optimal solutions could be zero, one and infinity. The next table clearly shows, which options are possible $(\sqrt{ })$ or aren't possible $(-)$ for the pair "feasible set - number of optimal solutions".

Table 2.1: Information about the feasible set and its cardinality.

number of optimal solutions	feasible set		
	empty	non-empty bounded	non-empty unbounded
zero	$\sqrt{ }$	-	$\sqrt{ }$
one	-	$\sqrt{ }$	$\sqrt{ }$
infinity	-	$\sqrt{ }$	$\sqrt{ }$

2.4. The Introduction to Convex Analysis

Definition 2.4. A non-empty set $M \in \mathbb{R}^{n}$ is called a convex set, if:

$$
(\forall \boldsymbol{x}, \boldsymbol{y} \in M)(\forall \lambda \in\langle 0 ; 1\rangle):[\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y} \in M] .
$$

Let a set M be a subset of \mathbb{R}^{2}. If for every pair of points within the set M, every point on the straight line segment that joins the pair of points is also within the set M, then the set M is convex.

Figure 2.8: Example of a convex set (a) and a nonconvex set (b) in \mathbb{R}^{2}.

Theorem 2.1. The intersection of convex sets is a convex set.

Figure 2.9: Intersections of pairs of convex sets in \mathbb{R}^{2}.

Definition 2.5. For any collection of points $x_{1}, x_{2}, \ldots, x_{\boldsymbol{k}} \in \mathbb{R}^{n}$ and for any nonnegative numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ such that

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=1
$$

the point $\boldsymbol{x}=\lambda_{1} \boldsymbol{x}_{\mathbf{1}}+\lambda_{2} \boldsymbol{x}_{\mathbf{2}}+\cdots+\lambda_{k} \boldsymbol{x}_{\boldsymbol{k}} \in \mathbb{R}^{n}$ is called a convex combination of points $x_{1}, x_{2}, \ldots, x_{k}$.

Theorem 2.2. Consider a set $M \in \mathbb{R}^{n}, M \neq \emptyset$. A set M is a convex set iff any convex combination of of any points of M belongs to M, too.

Definition 2.6. Let set $M \subseteq \mathbb{R}^{n}$. A set $\operatorname{conv}(M)$ with the characteristic properties
(1) $M \subseteq \operatorname{conv}(M)$
(2) $\operatorname{conv}(M)$ is convex set
(3) If there exists convex set M_{1}, such that $M \subseteq M_{1}$, then $\operatorname{conv}(M) \subseteq$ M_{1},
is called a convex hull of the set M. Consequently, the $\operatorname{conv}(M)$ is the smallest convex set such that $M \subseteq \operatorname{conv}(M)$.

Definition 2.7. Let M be a convex set. A point $\boldsymbol{x} \in M$ such that: if $\boldsymbol{x}=\lambda \boldsymbol{y}+(1-\lambda) \boldsymbol{z}$ for any $\boldsymbol{y}, \boldsymbol{z} \in M$ and $\lambda \in(0 ; 1)$, then $\boldsymbol{x}=\boldsymbol{y}=\boldsymbol{z}$. is called corner point of M.

Remark 2.2. There are used the denotation "boundary point, extreme point" for corner point in literature.

Definition 2.8. A corner point of set M is a point that can not be expressed as a nontrivial convex combination of points from M.
A set of corner points of M is called $e x(M)$.

Page 52 of 201

Go Back

Full Screen

Figure 2.10: Convex sets and their sets of corner points.

Theorem 2.3. Every bounded, closed, convex and non-empty set contains at least one corner point.

Theorem 2.4. Let $M \subseteq \mathbb{R}^{n}, M \neq \emptyset$ be bounded, closed and a convex set. Then every $\boldsymbol{x} \in M$ can be expressed as a convex combination of corner points of the set M.

Definition 2.9. A closed convex set is called polyhedral set if it has a finite number of corner points.

Only the set M_{1} is polyhedral in the picture 2.10.
Theorem 2.5. The feasible set F of any LPP is a convex set.
Theorem 2.6. The feasible set F of any LPP is polyhedral.
Theorem 2.7. The set of optimal solutions of any LPP is convex.
Theorem 2.8. Let us have a bounded and nonempty set F of feasible solutions of LPP. Then:
(1) there exists $\min \left\{\boldsymbol{c}^{\top} . \boldsymbol{x}: \boldsymbol{x} \in F\right\}=f^{*}$
(2) there exists a corner point $x_{\mathbf{0}}$ of set F such that $\boldsymbol{c}^{\top} . x_{\mathbf{0}}=f^{*}$.

Theorem 2.9 (The main theorem of LPP). There occurs exactly one of the following options for each minimization linear programming problem:

- LPP is unfeasible, i.e.; $F=\emptyset$.
- LPP is feasible but unbounded, i.e.; $F \neq \emptyset$ and objective function
$f(\boldsymbol{x})=\boldsymbol{c}^{\top} \cdot \boldsymbol{x}$ is lower unbounded on F.
- LPP has an optimal solution in at least one of the corner points of the feasible set.

2.5. The Standard Form of Linear Programming Problem

Definition 2.10. We say that a LPP is in canonical form if it is in the form:

$$
\begin{align*}
f(\boldsymbol{x}) & =\sum_{j=1}^{n}\left(c_{j} \cdot x_{j}\right) \rightarrow \min \\
\sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right) & \leq b_{i}, \quad \text { for } i=1, \ldots, m \tag{2.4}\\
x_{j} & \geq 0, \quad \text { for } j=1,2, \ldots, n .
\end{align*}
$$

Definition 2.11. We say that a LPP with n variables and m constraints is in standard form if it is in the form:

$$
\begin{align*}
f(\boldsymbol{x}) & =\sum_{j=1}^{n}\left(c_{j} \cdot x_{j}\right) \rightarrow \min \\
\sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right) & =b_{i}, \quad \text { for } i=1, \ldots, m \tag{2.5}\\
x_{j} & \geq 0, \quad \text { for } j=1,2, \ldots, n
\end{align*}
$$

Remark 2.3. A matrix representation of a standard form of a LPP is:

$$
\begin{align*}
f(\boldsymbol{x}) & =\boldsymbol{c}^{\top} \cdot \boldsymbol{x} \rightarrow \min \\
\boldsymbol{A} \cdot \boldsymbol{x} & =\boldsymbol{b} \tag{2.6}\\
\quad x_{j} & \geq 0, \quad \text { for } j=1,2, \ldots, n
\end{align*}
$$

Go Back

Full Screen

Theorem 2.10. In a general case, a canonical and a standard form of linear programming problems are equivalent to each other.

Thus, each LPP in a general form can be transformed into a canonical or a standard form and vice versa, while the optimal solution does not change.

2.5.1. Conversions of LPP Forms

We use some fundamental transformations to convert linear programming problems from any form into other form:

1. The changing of maximization LPP to minimization (or vice versa) is realized by multiplying of the objective function by -1 :

$$
\begin{align*}
f(x) & \rightarrow \max \quad / \cdot(-1) \\
-f(x) & \rightarrow \min \tag{2.7}
\end{align*}
$$

2. The conversion of constraint in inequality form " \leq " to constraint in inequality form " \geq " or vice versa is realized by multiplying the constraint by -1 :

$$
\begin{align*}
& \sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right) \geq b_{i} \quad / \cdot(-1) \\
& \sum_{j=1}^{n}\left(-a_{i j} \cdot x_{j}\right) \leq-b_{i} \tag{2.8}
\end{align*}
$$

3. The conversion of a constraint in inequality form to a constraint in an
equality form is realized by adding a non-negative slack variables:

$$
\begin{array}{ll}
\sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right) \geq b_{i} \quad \rightarrow \quad \sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right)-s_{i}=b_{i} ; & s_{i} \geq 0 \\
\sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right) \leq b_{i} \quad \rightarrow \quad \sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right)+s_{i}=b_{i} ; \quad s_{i} \geq 0 \tag{2.9}
\end{array}
$$

4. The conversion of a constraint in inequality form to a constraint in equality form is realized by substituting the equation with two inequalities according to the principle of dichotomy:

$$
\begin{array}{lll}
\sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right)=b_{i} \quad \rightarrow \quad & \sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right) \leq b_{i} \tag{2.10}\\
\sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right) \geq b_{i}
\end{array}
$$

5. The substitution of an infinite variable by a difference of two nonnegative variables:

$$
\begin{array}{lll}
x_{j} \text { is unbounded } \rightarrow & x_{j}=x_{j}^{+}-x_{j}^{-} \tag{2.11}\\
& x_{j}^{+} \geq 0 ; x_{j}^{-} \geq 0
\end{array}
$$

and:
if $x_{j}=0$, then $x_{j}^{+}=0 \wedge x_{j}^{-}=0$,
if $x_{j}>0$, then $x_{j}^{+}=x_{j} \wedge x_{j}^{-}=0$,
if $x_{j}<0$, then $x_{j}^{+}=0 \wedge x_{j}^{-}=-x_{j}$.
See example 2.11.

2.6. The Basis Feasible Solution of Linear Programming Problems

Let $A \in \mathbb{R}_{m, n}$ be matrix such that $h(\boldsymbol{A})=m$ and $m \leq n$. Considering properties of matrices, rows of A are linearly independent iff there exist m linearly independent columns in A.

Definition 2.12. The set, which is created by m linearly independent columns of \boldsymbol{A} is called a base of the matrix \boldsymbol{A} and it is denoted \mathcal{B}. The matrix, which is created by columns of the base \mathcal{B}, is denoted \boldsymbol{B}.
Denotation: The base \mathcal{B} is created by m linearly independent columns of the matrix \boldsymbol{A}, it will be denotated $\mathcal{B}=\left\{A_{B(1)}, A_{B(2)}, \ldots, A_{B(m)}\right\}$. So, $A_{B(i)}$ denotes a column of \boldsymbol{A}, which is i-th element of the base \mathcal{B}. $B(i)$ denotes the index of the column that is i-th element of the base \mathcal{B}.

Clearly, the square matrix B is regular, thus there exists its inverse matrix \boldsymbol{B}^{-1}. See example 2.12.

Let $A \in \mathbb{R}_{m, n}$ be matrix with m linearly independent rows and n columns. A base of this matrix has to be $m \times m$. Hence, the maximum number of bases of \boldsymbol{A} is $\binom{n}{m}$. See example 2.13.

Remark 2.4. Let $\mathcal{B}=\left\{A_{B(1)}, A_{B(2)}, \ldots, A_{B(m)}\right\}$ be a base of the matrix \boldsymbol{A}, then every column $A_{j} ; j=1,2, \ldots, n$ of the matrix \boldsymbol{A} can be expressed as

Go Back
a linear combination of basis columns:

$$
A_{j}=\sum_{i=1}^{m}\left(x_{i j} \cdot A_{B(i)}\right),
$$

and values $x_{i j}$ are called coordinates of the column A_{j} in the base \mathcal{B}.
See example 2.14.
Definition 2.13. The solution $\boldsymbol{x}_{\mathcal{B}}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top}$ of system $\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b}$ such that:
$x_{j}= \begin{cases}0 ; & \text { if } \boldsymbol{A}_{j} \notin \mathcal{B}, \\ \text { particular element (coordinate) of the solution of } \boldsymbol{B} \cdot \boldsymbol{x}_{\mathcal{B}}=\boldsymbol{b} ; & \text { if } \boldsymbol{A}_{j} \in \mathcal{B} .\end{cases}$
is called the basis solution (BS) of the given system for base \mathcal{B}.
It implies:

$$
\sum_{i=1}^{m}\left(x_{B(i)} \cdot A_{B(i)}\right)=\boldsymbol{b}
$$

See example 2.15.
Definition 2.14. A basis solution $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top}$ is called a basis feasible solution (BFS), if $x_{j} \geq 0, \forall j \in\{1,2, \ldots, n\}$.
Definition 2.15. Let $\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b}$ be system such that $A \in \mathbb{R}_{m, n}$ is a matrix with m linearly independent columns. A basis solution with more than $n-m$ zero elements is called a degenerated solution.

See example 2.16.

Theorem 2.11. If two different bases correspond to the same basis solution \boldsymbol{x}, then this solution \boldsymbol{x} is degenerated.

We can see it in the previous example. The solution $x_{\mathcal{B}_{1}}=x_{\mathcal{B}_{2}}=$ $(2,0,0,0)^{\top}$ is degenerated and it corresponds to two bases \mathcal{B}_{1} and \mathcal{B}_{2}. Similarly, the solution $\boldsymbol{x}_{\mathcal{B}_{3}}=\boldsymbol{x}_{\mathcal{B}_{5}}=(0,0,1,0)^{\top}$ is also degenerated and it corre-

Contents sponds to two bases \mathcal{B}_{3} and \mathcal{B}_{5}.

Theorem 2.12. The LPP in standard form (2.5) with matrix $A \in \mathbb{R}_{m, n}$ has a basis feasible solution iff $F \neq \emptyset$ and $h(\boldsymbol{A})=m$.

Theorem 2.13. If columns $A_{1}, A_{2}, \ldots, A_{k}$ of \boldsymbol{A} are linearly independent and the solution
$\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{k}, 0, \ldots, 0,0\right)^{T} \in F$, then $\boldsymbol{x} \in \operatorname{ex}(F)$.
Theorem 2.14. If $\boldsymbol{x} \in e x(F)$, then the set $\left\{A_{j}, x_{j} \geq 0\right\}$ of matrix \boldsymbol{A} columns is linearly independent set.

2.7. Solved Examples

Example 2.5. An iron foundry produces three different alloys $\left(Z_{1}, Z_{2}, Z_{3}\right)$ for the aerospace industry, which arise by mixing four different metals (K_{1}, K_{2}, K_{3}, K_{4}) in precise proportions. We need $0,6 \mathrm{~kg}$ of metal K_{1} and $0,4 \mathrm{~kg}$ of metal K_{2} to produce one kilogram of alloy Z_{1}. One kilogram of alloy Z_{2} consists of $0,5 \mathrm{~kg}$ of metal K_{2} and $0,5 \mathrm{~kg}$ of metal K_{4}. One kilogram of alloy
Z_{3} consists of $0,3 \mathrm{~kg}$ of metal K_{3} and $0,7 \mathrm{~kg}$ of metal K_{4}. Foundry has 5 kg of metal $K_{1}, 6 \mathrm{~kg}$ of metal $K_{2}, 7 \mathrm{~kg}$ of metal K_{3} and 3 kg of metal K_{4}. Profit from the sale of one kilogram of alloy Z_{1}, Z_{2} a Z_{3} is $50 €, 40 €$ a $60 €$. What production plan should be used to maximize its profits?
Solution:
We write the available data for the production of different types of alloys to a summary table :

Table 2.2: Summary Table - the weights, capacities and profits.

alloy \backslash metal	$K_{1}(\mathrm{~kg})$	$K_{2}(\mathrm{~kg})$	$K_{3}(\mathrm{~kg})$	$K_{4}(\mathrm{~kg})$	profit $(€)$
$Z_{1}(1 \mathrm{~kg})$	0,6	0,4	0	0	50
$Z_{2}(1 \mathrm{~kg})$	0	0,5	0	0,5	40
$Z_{3}(1 \mathrm{~kg})$	0	0	0,3	0,7	60
capacity (kg)	5	6	7	3	

We write a mathematical model of the task using mathematical tools. Quantities of alloys which have to be produced by foundry are unknown, therefore it is decision variables of the objective function. Denote them x_{1}, x_{2} and x_{3}.

The objective function of this LPP is:

$$
50 x_{1}+40 x_{2}+60 x_{3} \rightarrow \max
$$

Each alloy has a fixed ratio of metals. We also know that the amount of metals that is available is not unlimited, which means that we must not exceed the specified capacity. So we can write constrain in the inequalitie form for each metal. For example K_{2} is used to produce alloys Z_{1} a Z_{2}. We need $0,4 \mathrm{~kg}$ of it to produce one kilogram of Z_{1} and $0,5 \mathrm{~kg}$ of it to produce one kilogram of Z_{2}. We have 6 kg of K_{2}. The constrain for K_{2} is:

$$
0,4 x_{1}+0,5 x_{2} \leq 6
$$

The nonnegativity constrains will be also included for each variable, because to consider the production of negative amount of alloys does not make sense.

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

The whole mathematical model of the LPP is as follows:

$$
\begin{aligned}
50 x_{1}+40 x_{2}+60 x_{3} & \rightarrow \max \\
0,6 x_{1} & \leq 5 \\
0,4 x_{1}+0,5 x_{2} & \leq 6 \\
0,3 x_{3} & \leq 7 \\
0,5 x_{2}+0,7 x_{3} & \leq 3 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Solution:

The input data can be clearly written into the following table:

Table 2.3: Summary Table - capacities and profits

ships	time of construction [month]	transport capacity $[\mathrm{pc}]$	profit $[$ mil. $€]$
$L 100$	6	100	12
$L 80(\leq 4)$	4	80	10
L40	3	40	8
capacity	20	320	

Decision variables in this LPP will be the numbers of ships produced by each type $L 100, L 80$ and $L 40$, we denote them as x_{1}, x_{2} a x_{3}. The constrains are three, the first will be related to the time of construction, the second is related to the amount of containers and the third constrain will express the fact, that a limit for ships $L 80$ is no more than 4 piece. All three variables must be non-negative, moreover, the numbers of produced ships must be integers. Therefore, in this case, the integer condition will be added for all

Close
the decision variables:

$$
x_{1}, x_{2}, x_{3} \in \mathbb{Z}
$$

The mathematical model of the LPP is as follows:

$$
\begin{aligned}
12 x_{1}+10 x_{2}+8 x_{3} & \rightarrow \max \\
6 x_{1}+4 x_{2}+3 x_{3} & \leq 20 \\
100 x_{1}+80 x_{2}+40 x_{3} & \leq 320 \\
x_{2} & \leq 4 \\
x_{1}, x_{2}, x_{3} & \geq 0 \\
x_{1}, x_{2}, x_{3} & \in \mathbb{Z}
\end{aligned}
$$

Such a problem is called the integer linear programming problem and denoted as ILPP.

Example 2.7. A farmer keeps cattle on the farm. He has to buy the necessary amount of three offered semiproducts P_{1}, P_{2}, P_{3} for its fattening. He finally mixed them and prepare a final dose of compound. This should include at least 5 kg of proteins, 7 kg of carbohydrates and $3,5 \mathrm{~kg}$ of fat. There are 380 g of proteins, 240 g of carbohydrates and 200 g of fat in one kilogram of P_{1}. One kilogram of P_{2} contains 180 g of proteins, 320 g of carbohydrates and 150 g of fat and one kilogram of P_{3} contains 110 g of proteins, 220 g of carbohydrates and 400 g of fat. Prices of semiproducts P_{1}, P_{2}, respectively

Contents
P_{3} per kilo are $4,30 €, 3,20 €$ and $3,70 €$. The target is what quantities of each semiproducts is necessary to mix in order to reach a mixture with the required parameters while costs are minimal.

Solution:

We write data about the composition and prices of semiproducts into the table and we pay attention to the consistency of physical quantities:

Table 2.4: Summary Table - mixing problem

nutrient\semiproduct	$P_{1}(\mathrm{~kg})$	$P_{2}(\mathrm{~kg})$	$P_{3}(\mathrm{~kg})$	required amount (g)	
proteins (g)	380	180	110	5000	
carbohydrates (g)	240	320	220	7000	
fat (g)	200	150	400	3500	
price $(€)$	4,30	3,20	3,70		

By a similar way as in the previous examples we write the mathematical model of the problem. The objective function is a function of prices of semiproducts and each constraint (inequality) sets down the amount of proteins, carbohydrates and fat as they are entered in the table.

$$
\begin{aligned}
4,3 x_{1}+3,2 x_{2}+3,7 x_{3} & \rightarrow \min \\
380 x_{1}+180 x_{2}+110 x_{3} & \geq 5000 \\
240 x_{1}+320 x_{2}+220 x_{3} & \geq 7000 \\
200 x_{1}+150 x_{2}+400 x_{3} & \geq 3500 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$ meters. Suggest an optimal solution by minimizing the waste.

Solution:

Nine-meter bar can be cut to the required lengths in five ways:
We obtained a waste 1 meter by cuttings R_{2} and R_{3}, a waste 2 meter by cuttings R_{4} and no waste arises in cutting plan R_{5}. Thus, the number of variables is five and we will minimize the waste function. Constrains will be determined as the number of units required for any required length. The last condition considers the number of available bars. Of course, all variables

must satisfy nonnegativity and integer conditions.

$$
\begin{aligned}
& x_{2}+x_{3}+2 x_{4} \rightarrow \min \\
& x_{1}+x_{2} \geq 8 \\
& x_{1}+2 x_{3}+x_{4} \geq 14 \\
& x_{2}+x_{4}+3 x_{5} \geq 20 \\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \leq 18 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in \mathbb{Z}
\end{aligned}
$$

Example 2.9. A chain of hypermarkets has its central stores in BA, LM and KE. These central stores dispose of the amounts 40,20 and 40 units of the same item. The individual hypermarkets need these amounts of this item: $\mathrm{TN}-25, \mathrm{ZA}-10, \mathrm{RV}-20, \mathrm{BB}-30, \mathrm{PP}-15$. Transport costs of 1 unit of this item from central stores into individual hypermarkets are listed in the following table. Design a supply with this item in order to minimize the transport costs.

Table 2.5: List of distances between cities.

provider \backslash customer	TN	ZA	RV	BB	PP
KE	55	60	30	50	40
BA	35	30	100	45	60
LM	40	30	95	35	30

Solution:

In this example we have five customers, so $n=5$ and three providers, so $m=3$. We will minimize the objective function (cost function), where the variable $x_{i j}$ specifies the amount of units of the commodity to be transported
from the i-th central store to the j-th hypermarket. Therefore, there are $m \cdot n=3 \cdot 5=15$ variables. Objective function can be written as follows:

$$
\begin{aligned}
& 55 x_{11}+60 x_{12}+30 x_{13}+50 x_{14}+40 x_{15}+35 x_{21}+30 x_{22}+100 x_{23}+ \\
& \quad+45 x_{24}+60 x_{25}+40 x_{31}+30 x_{32}+95 x_{33}+35 x_{34}+30 x_{35} \rightarrow \text { min }
\end{aligned}
$$

We have the following constraints from the customer's requirements:

$$
\begin{aligned}
x_{11}+x_{12}+x_{13}+x_{14}+x_{15} & =40 \\
x_{21}+x_{22}+x_{23}+x_{24}+x_{25} & =40 \\
x_{31}+x_{32}+x_{33}+x_{34}+x_{35} & =20
\end{aligned}
$$

It is evident that we cannot transport negative quantities of commodity, so the nonnegativity conditions must also be satisfied.

$$
x_{i j} \geq 0 \quad \text { for } i=1,2,3 ; \quad j=1,2,3,4,5
$$

Because the equality

$$
\sum_{i=1}^{3} a_{i}=\sum_{j=1}^{5} b_{j}=100
$$

is valid, the transportation problem is balanced.
Example 2.10. A taxi service has 3 taxis $\left(T_{1}, T_{2}, T_{3}\right)$ located at different places and they are available for assignment to 3 clients $\left(C_{1}, C_{2}, C_{3}\right)$. Any taxi can be assigned to any client. The required time to move every taxi for any client is given by the table below (in minutes). The taxi service wants to minimize the total time needed to transfer all three taxis to clients.

Solution:

The task has nine variables, because $n=3$. In a similar way as in the example 2.9, we write the objective function and constraints for taxis and clients. Only nonnegativity conditions are changed to conditions $x_{i j} \in\{0,1\}$.

$$
13 x_{11}+15 x_{12}+20 x_{13}+14 x_{21}+10 x_{22}+17 x_{23}+12 x_{31}+15 x_{32}+12 x_{33} \rightarrow \min
$$

Table 2.6: The time data for the assignment problem.

taxi \backslash client	C_{1}	C_{2}	C_{3}
T_{1}	13	15	20
T_{2}	14	10	17
T_{3}	12	15	12

$$
\text { Page } 72 \text { of } 201
$$

$$
\begin{aligned}
& x_{11}+x_{12}+x_{13} \quad=1 \\
& x_{12}+x_{x_{13}+}^{x_{22}+}{ }^{x_{23}+} \\
& x_{31} \quad=1 \\
& x_{32}=1 \\
& x_{33}=1 \\
& x_{i j} \in\{0,1\} \quad \text { for } i, j=1,2, \ldots, n
\end{aligned}
$$

Example 2.11. Transform the given LPP to a canonical and standard form:

$$
\begin{array}{r}
x_{1}-x_{2} \rightarrow \max \\
3 x_{1}-5 x_{2} \leq 8 \\
-2 x_{1}+x_{2} \geq 4 \\
x_{1}+x_{2}=6 \\
x_{1} \geq 0
\end{array}
$$

Solution:

The objective function have to be minimization, so we use fundamental transformation (2.7):

$$
-x_{1}+x_{2} \rightarrow \min
$$

The variable x_{2} is unbounded. We substitute it by using transformation (2.11):

$$
x_{2}=x_{2}^{+}-x_{2}^{-} ; \quad x_{2}^{+} \geq 0 ; x_{2}^{-} \geq 0
$$

and we obtain:

$$
\begin{align*}
-x_{1}+x_{2}^{+}-x_{2}^{-} & \rightarrow \min \\
3 x_{1}-5 x_{2}^{+}+5 x_{2}^{-} & \leq 8 \\
-2 x_{1}+x_{2}^{+}-x_{2}^{-} & \geq 4 \tag{2.12}\\
x_{1}+x_{2}^{+}-x_{2}^{-} & =6 \\
x_{1}, x_{2}^{+}, x_{2}^{-} & \geq 0
\end{align*}
$$

We need all constraints in inequality form " \geq " for canonical form. We multiply the first constraint by -1 and we use the transformation (2.10) for the third constraint and then we multiply arosen constraint by -1 . The canonical form is:

$$
\begin{aligned}
-x_{1}+x_{2}^{+}-x_{2}^{-} & \rightarrow \min \\
-3 x_{1}+5 x_{2}^{+}-5 x_{2}^{-} & \geq-8 \\
-2 x_{1}+x_{2}^{+}-x_{2}^{-} & \geq 4 \\
x_{1}+x_{2}^{+}-x_{2}^{-} & \geq 6 \\
-x_{1}-x_{2}^{+}+x_{2}^{-} & \geq-6 \\
x_{1}, x_{2}^{+}, x_{2}^{-} & \geq 0
\end{aligned}
$$

$$
-x_{1}+x_{2}^{+}-x_{2}^{-} \rightarrow \min
$$

$$
3 x_{1}-5 x_{2}^{+}+5 x_{2}^{-}+s_{1}=8
$$

$$
-2 x_{1}+x_{2}^{+}-x_{2}^{-}-s_{1}=4
$$

$$
x_{1}+x_{2}^{+}-x_{2}^{-}=6
$$

$$
x_{1}, x_{2}^{+}, x_{2}^{-}, s_{1}, s_{2} \geq 0
$$

Example 2.12. Let's have given the following matrix \boldsymbol{A}. We want to choose the base of it.

$$
A=\left(\begin{array}{lllll}
2 & 1 & 4 & 3 & 1 \\
3 & 1 & 5 & 4 & 2 \\
1 & 0 & 2 & 1 & 2
\end{array}\right)
$$

Solution:

We choose columns A_{1}, A_{2} a A_{5} from matrix A. They are linearly independent, so they create a base say \mathcal{B}_{1}. Similarly, columns A_{2}, A_{3} a A_{4} also create a base say \mathcal{B}_{2}. Let matrices $\boldsymbol{B}_{\mathbf{1}}$ and $\boldsymbol{B}_{\mathbf{2}}$ are created by columns of these bases. The matrix $\boldsymbol{C}_{\mathbf{1}}$, which consists of A_{1}, A_{2} and A_{4}, isn't a matrix of a base, because $A_{4}=A_{1}+A_{2}$. Similarly the matrix C_{2}, which consists of A_{1}, A_{3} and A_{5}, isn't matrix of base, because $A_{3}=A_{5}+A_{1}$.

$$
\begin{array}{ll}
\boldsymbol{B}_{1}=\left(\begin{array}{lll}
2 & 1 & 1 \\
3 & 1 & 2 \\
1 & 0 & 2
\end{array}\right), & \boldsymbol{B}_{2}=\left(\begin{array}{lll}
1 & 4 & 3 \\
1 & 5 & 4 \\
0 & 2 & 1
\end{array}\right) \\
\boldsymbol{C}_{1}=\left(\begin{array}{lll}
2 & 1 & 3 \\
3 & 1 & 4 \\
1 & 0 & 1
\end{array}\right), & \boldsymbol{C}_{2}=\left(\begin{array}{lll}
2 & 4 & 2 \\
3 & 5 & 2 \\
1 & 2 & 1
\end{array}\right) .
\end{array}
$$

Example 2.13. Find all bases of the matrix \boldsymbol{A}.

$$
A=\left(\begin{array}{rrrr}
2 & 3 & 4 & -1 \\
1 & 5 & 2 & 0
\end{array}\right)
$$

Solution:

Rows of the \boldsymbol{A} are linearly independent, so, rank of this matrix is $h(\boldsymbol{A})=2$. The number of columns of \boldsymbol{A} is 4 . Thus, the maximum number of bases of \boldsymbol{A} is $\binom{4}{2}=6$. We create all 6 possible submatrices with size 2×2 from columns of \boldsymbol{A}.

$$
\begin{aligned}
& \boldsymbol{M}_{1}=\left(\begin{array}{ll}
2 & 3 \\
1 & 5
\end{array}\right), \quad \boldsymbol{M}_{2}=\left(\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right), \quad \boldsymbol{M}_{3}=\left(\begin{array}{rr}
2 & -1 \\
1 & 0
\end{array}\right), \\
& \boldsymbol{M}_{4}=\left(\begin{array}{ll}
3 & 4 \\
5 & 2
\end{array}\right), \quad \boldsymbol{M}_{5}=\left(\begin{array}{rr}
3 & -1 \\
5 & 0
\end{array}\right), \quad \boldsymbol{M}_{6}=\left(\begin{array}{rr}
4 & -1 \\
2 & 0
\end{array}\right) .
\end{aligned}
$$

Columns of \boldsymbol{M}_{2}, which is created by columns A_{1} and A_{3}, are linearly independent (one is a multiple of another), therefore this matrix cannot be a base matrix of \boldsymbol{A}. In all other cases, the columns are linearly independent and the matrices are base matrices of the matrix A :
$\mathcal{B}_{1}=\left\{A_{1}, A_{2}\right\}, \mathcal{B}_{2}=\left\{A_{1}, A_{4}\right\}, \mathcal{B}_{3}=\left\{A_{2}, A_{3}\right\}, \mathcal{B}_{4}=\left\{A_{2}, A_{4}\right\}, \mathcal{B}_{5}=\left\{A_{3}, A_{4}\right\}$.

Example 2.14. Calculate the coordinates of the column A_{4} in the base \mathcal{B}_{3} from the example 2.13.
Solution:
The base \mathcal{B}_{3} is created by columns A_{2}, A_{3}. According to the remark 2.4, we write:

$$
A_{4}=x_{14} \cdot A_{2}+x_{24} \cdot A_{3}
$$

We obtain the following system by substituting of particular elements of columns:

$$
\begin{aligned}
-1 & =3 x_{14}+4 x_{24} \\
0 & =5 x_{14}+2 x_{24}
\end{aligned}
$$

$$
x^{\mathcal{B}_{3}}=\left(\frac{1}{7},-\frac{5}{14}\right)
$$

Go Back

$$
\left(\begin{array}{rrrr}
2 & 3 & 4 & -1 \\
1 & 5 & 2 & 0
\end{array}\right) \cdot \boldsymbol{x}=\binom{4}{2}
$$

Solution:
We denote the matrix on the left side of the system as A. It is the same matrix as in the example 2.13 and therefore there exist five different bases
of A
$\mathcal{B}_{1}=\left\{A_{1}, A_{2}\right\}, \mathcal{B}_{2}=\left\{A_{1}, A_{4}\right\}, \mathcal{B}_{3}=\left\{A_{2}, A_{3}\right\}, \mathcal{B}_{4}=\left\{A_{2}, A_{4}\right\}, \mathcal{B}_{5}=\left\{A_{3}, A_{4}\right\}$.
We denote the matrix on the right side of the system by \boldsymbol{b}. We calculate a solution of $\boldsymbol{B}_{k} \cdot \boldsymbol{x}=\boldsymbol{b}$ for every base $\mathcal{B}_{k}, k \in\{1,2,3,4,5\}$. According to the defiinition 2.13, we write all basis solutions $\boldsymbol{x}_{\mathcal{B}_{k}}$.

$$
\begin{gathered}
\mathcal{B}_{1}=\left\{A_{1}, A_{2}\right\} ; \quad\left(\begin{array}{ll}
2 & 3 \\
1 & 5
\end{array}\right) \cdot \boldsymbol{x}=\binom{4}{2} ; \quad \boldsymbol{x}_{\mathcal{B}_{1}}=(2,0,0,0)^{\top} \\
\mathcal{B}_{2}=\left\{A_{1}, A_{4}\right\} ; \quad\left(\begin{array}{rr}
2 & -1 \\
1 & 0
\end{array}\right) \cdot \boldsymbol{x}=\binom{4}{2} ; \quad \boldsymbol{x}_{\mathcal{B}_{2}}=(2,0,0,0)^{\top} \\
\mathcal{B}_{3}=\left\{A_{2}, A_{3}\right\} ; \quad\left(\begin{array}{rr}
3 & 4 \\
5 & 2
\end{array}\right) \cdot \boldsymbol{x}=\binom{4}{2} ; \quad \boldsymbol{x}_{\mathcal{B}_{3}}=(0,0,1,0)^{\top} \\
\mathcal{B}_{4}=\left\{A_{2}, A_{4}\right\} ; \quad\left(\begin{array}{rr}
3 & -1 \\
5 & 0
\end{array}\right) \cdot \boldsymbol{x}=\binom{4}{2} ; \quad \boldsymbol{x}_{\mathcal{B}_{4}}=\left(0, \frac{2}{5}, 0,-\frac{14}{5}\right)^{\top}
\end{gathered}
$$

$$
\mathcal{B}_{5}=\left\{A_{3}, A_{4}\right\} ; \quad\left(\begin{array}{rr}
4 & -1 \\
2 & 0
\end{array}\right) \cdot \boldsymbol{x}=\binom{4}{2} ; \quad \boldsymbol{x}_{\mathcal{B}_{5}}=(0,0,1,0)^{\top}
$$

Example 2.16. Determine which of the solutions in the example 2.15 are feasible and which are degenerated.

Solution:

Basis feasible solutions: $\boldsymbol{x}_{\mathcal{B}_{1}}, \boldsymbol{x}_{\mathcal{B}_{2}}, \boldsymbol{x}_{\mathcal{B}_{3}}$ and $\boldsymbol{x}_{\mathcal{B}_{5}}$.

Degenerated solutions: $\boldsymbol{x}_{\mathcal{B}_{1}}, \boldsymbol{x}_{\mathcal{B}_{2}}, \boldsymbol{x}_{\mathcal{B}_{3}}$ and $\boldsymbol{x}_{\mathcal{B}_{5}}$.

2.8. Exercises

Design a mathematical model for the verbally formulated linear programming problems 2.1-2.9.
2.1. We have 30 bar pieces each with the length of 12 meters. We need to cut 15 bar pieces with the length of 5 meters, 40 bar pieces with the length of 4 meters and 35 bar pieces with the length of 3 meters. Suggest an optimal solution by minimizing the scrap.
2.2. There is a cutting machine available for a cutting line which is able to

Contents
three times as much in the municipal bonds as in the bank CDs. Assuming the year-end yields are as expected, what are optimal investment amounts?
2.4. At a certain refinery, the refining process requires the production of at least three gallons of gasoline for each gallon of fuel oil. To meet the
anticipated demands of winter, at least three million gallons of fuel oil a day will need to be produced. The demand for gasoline, on the other hand, is not more than 6.4 million gallons a day. If gasoline is selling for $\$ 4.50$ per gallon and fuel oil sells for $\$ 5.90 /$ gal, how much of each should be produced in order to maximize revenue?
2.5. A farmer has 10 acres to plant in wheat and rye. He has to plant at least 7 acres. However, he has only $\$ 1200$ to invest and each acre of wheat costs $\$ 200$ to plant and each acre of rye costs $\$ 100$ to plant. Moreover, the farmer has to get the planting done in 12 hours and it takes an hour to plant an acre of wheat and 2 hours to plant an acre of rye. If the profit is $\$ 500$ per acre of wheat and $\$ 300$ per acre of rye how many acres of each should be planted to maximize profits?
2.6. A gold processor has two sources of gold ore, source A and source B. In order to keep his plant running, at least three tons of ore must be processed each day. Ore from source A costs $\$ 1000$ per ton to process, and ore from source B costs $\$ 2000$ per ton to process. Costs must be at most $\$ 8000$ per day. Moreover, Federal Regulations require that the amount of ore from source B cannot exceed twice the amount of ore from source A. If ore from

Contents
source A yields 2 oz. of gold per ton, and ore from source B yields 3 oz. of gold per ton, how many tons of ore from both sources must be processed each day to maximize the amount of gold extracted subject to the above constraints?
2.7. A chain of hypermarkets has its central stores in BA, LM and KE. These central stores dispose of the amounts 40,20 and 40 units of the same item. The individual hypermarkets need these amounts of this item: TN - 25, ZA $-20, \mathrm{BB}-30, \mathrm{PP}-25$. Transport costs of 1 unit of this item from central stores into hypermarkets are listed in the following table. Design a supply with this item in order to minimize the transport costs.
2.8. A carpenter makes tables and chairs and he wants to have a maximal profit. Each table can be sold for a profit of $£ 30$ and each chair for a profit of $£ 10$. The carpenter can afford to spend up to 40 hours per week working and takes six hours to make a table and three hours to make a chair. Customer demand requires that he makes at least three times as many chairs as tables. Tables take up four times as much storage space as chairs and there is room for at most four tables each week. Formulate this problem as a linear

Contents
\square
programming problem.
2.9. A calculator company produces a scientific calculator and a graphing calculator. Long-term projections indicate an expected demand of at least 100 scientific and 80 graphing calculators each day. Because of limitations on production capacity, no more than 200 scientific and 170 graphing calculators can be made daily. To satisfy a shipping contract, a total of at least 200 calculators much be shipped each day. If each scientific calculator sold results in a $\$ 2$ loss, but each graphing calculator produces a $\$ 5$ profit, how many of each type should be made daily to maximize net profits?
2.10. Convert the following linear programming problems into canonical and standard form.
a)

$$
\begin{aligned}
2 x_{1}+x_{2} & \rightarrow \max \\
4 x_{1}-x_{2} & \leq 4 \\
x_{1}+2 x_{2} & \geq 5 \\
x_{1} & \leq 6 \\
x_{1,2} & \geq 0
\end{aligned}
$$

b)

$$
\begin{aligned}
2 x_{1}-3 x_{2} & \rightarrow \min \\
x_{1}+x_{2} & =15 \\
x_{1}-x_{2} & \geq 7 \\
3 x_{1}+x_{2} & \leq 3 \\
x_{1,2} & \geq 0
\end{aligned}
$$

Title Page

Contents

d)

$$
\begin{aligned}
4 x_{1}-x_{2}+3 x_{3} & \rightarrow \min \\
2 x_{1}-8 x_{2}+2 x_{3} & =6 \\
3 x_{1}-4 x_{2}+3 x_{3} & \geq 4 \\
7 x_{1}+5 x_{2}+x_{3} & \geq-4 \\
x_{1,2} & \geq 0
\end{aligned}
$$

e)

$$
\begin{aligned}
-x_{1}-2 x_{2}-3 x_{3} & \rightarrow \max \\
x_{1}-x_{2}+4 x_{3} & \leq 6 \\
x_{1}+2 x_{2}-3 x_{3} & \geq 7 \\
x_{1}-2 x_{3} & =3 \\
x_{2,3} & \geq 0
\end{aligned}
$$

Title Page

Contents

44

$$
\begin{aligned}
x_{1}-x_{2}+x_{3}-x_{4} & \rightarrow \min \\
2 x_{1}+3 x_{2}-x_{4} & =8 \\
4 x_{1}-7 x_{3}+2 x_{4} & =12
\end{aligned}
$$

2.9. Solutions

2.1

$$
\begin{aligned}
2 x_{1}+x_{3}+x_{5}+2 x_{6} & \rightarrow \min \\
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7} & \leq 30 \\
2 x_{1}+x_{2}+x_{3} & \geq 15 \\
x_{2}+3 x_{4}+2 x_{5}+x_{6} & \geq 35 \\
x_{2}+2 x_{3}+x_{5}+2 x_{6}+4 x_{7} & \geq 40 \\
x_{1, \ldots, 7} & \geq 0
\end{aligned}
$$

$11 x_{1}+18 x_{2}+11 x_{3}+18 x_{4}+25 x_{5} \rightarrow \min$

$$
x_{1}+x_{2} \geq 862
$$

$$
x_{1}+2 x_{3}+x_{4} \geq 341
$$

$$
2 x_{2}+x_{3}+3 x_{4}+5 x_{5} \geq 216
$$

$$
x_{1, \ldots, 5} \geq 0
$$

2.3

$$
\begin{aligned}
0,07 x_{1}+0,08 x_{2}+0,12 x_{3} & \rightarrow \max \\
x_{1}+x_{2}+x_{3} & =12000 \\
x_{3} & \leq 2000 \\
x_{1}-3 x_{2} & \geq 0 \\
x_{1,2,3} & \geq 0
\end{aligned}
$$

Title Page

Contents

$$
\begin{aligned}
4,5 x_{1}+5,9 x_{2} & \rightarrow \max \\
x_{1}-3 x_{2} & \geq 0 \\
x_{1} & \geq 3 \\
0 \leq x_{2} & \leq 6,4
\end{aligned}
$$

2.5
$500 x_{1}+300 x_{2} \rightarrow \max$

$$
x_{1}+x_{2} \leq 10
$$

$$
x_{1}+x_{2} \geq 7
$$

$$
200 x_{1}+100 x_{2} \leq 1200
$$

$$
x_{1}+2 x_{2} \leq 12
$$

$$
x_{1,2} \geq 0
$$

$$
\begin{aligned}
60 x_{1}+90 x_{2} & \rightarrow \max \\
x_{1}+x_{2} & \geq 3 \\
2000 x_{1}+1000 x_{2} & \leq 8000 \\
2 x_{1}-x_{2} & \geq 0 \\
x_{1,2} & \geq 0
\end{aligned}
$$

2.7

$$
\begin{aligned}
& 55 x_{11}+60 x_{12}+50 x_{13}+40 x_{14}+35 x_{21}+30 x_{22}+45 x_{23}+60 x_{24}+ \\
&+40 x_{31}+30 x_{32}+35 x_{33}+30 x_{34} \rightarrow \min \\
& x_{11}+x_{12}+x_{13}+x_{14}=40 \\
& x_{21}+x_{22}+x_{23}+x_{24}=40 \\
& x_{31}+x_{32}+x_{33}+x_{34}=20 \\
& x_{11}+x_{21}+x_{31}=25 \\
& x_{12}+x_{22}+x_{32}=20 \\
& x_{13}+x_{23}+x_{33}=30 \\
& x_{14}+x_{24}+x_{34}=25 \\
& x_{11,12, \ldots, 34} \geq 0
\end{aligned}
$$

2.8

$$
\begin{aligned}
30 x_{1}+10 x_{2} & \rightarrow \max \\
6 x_{1}+3 x_{2} & \leq 40 \\
3 x_{1}-x_{2} & \leq 0 \\
4 x_{1}+x_{2} & \leq 16 \\
x_{1,2} & \geq 0
\end{aligned}
$$

Title Page

Contents

2.9

$$
\begin{aligned}
-2 x_{1}+5 x_{2} & \rightarrow \max \\
100 \leq x_{1} & \leq 200 \\
80 \leq x_{2} & \leq 170 \\
x_{1}+x_{2} & \geq 200 \\
x_{1,2} & \geq 0
\end{aligned}
$$

a)

Contents

$$
4 x_{1}-x_{2}+s_{1}=4
$$

$$
x_{1}+2 x_{2}-s_{2}=5
$$

$$
x_{1}+s_{3}=6
$$

$$
x_{1,2} \geq 0
$$

$$
s_{1,2,3} \geq 0
$$

b)

$$
\begin{aligned}
2 x_{1}-3 x_{2} & \rightarrow \min \\
-x_{1}-x_{2} & \geq-15 \\
x_{1}+x_{2} & \geq 15 \\
x_{1}-x_{2} & \geq 7 \\
-3 x_{1}-x_{2} & \geq-3 \\
x_{1,2} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
2 x_{1}-3 x_{2} & \rightarrow \min \\
x_{1}+x_{2} & =15 \\
x_{1}-x_{2}-s_{1} & =7 \\
3 x_{1}+x_{2}+s_{2} & =3 \\
x_{1,2} & \geq 0 \\
s_{1,2} & \geq 0
\end{aligned}
$$

c)

$$
\begin{aligned}
-x_{1}+4 x_{2}-x_{3} & \rightarrow \min \\
-x_{1}-x_{2}-x_{3} & \geq-10 \\
x_{1}+x_{2}+x_{3} & \geq 10 \\
-2 x_{1}-x_{2}-3 x_{3} & \geq-120 \\
x_{1,2,3} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
-x_{1}+4 x_{2}-x_{3} & \rightarrow \min \\
x_{1}+x_{2}+x_{3} & =10 \\
2 x_{1}+x_{2}+3 x_{3}+s_{1} & =120 \\
x_{1,2,3} & \geq 0 \\
s_{1} & \geq 0
\end{aligned}
$$

d)

$$
\begin{aligned}
4 x_{1}-x_{2}+3 x_{3}^{+}-3 x_{3}^{-} & \rightarrow \min \\
-2 x_{1}+8 x_{2}-2 x_{3}^{+}+2 x_{3}^{-} & \geq-6 \\
2 x_{1}-8 x_{2}+2 x_{3}^{+}-2 x_{3}^{-} & \geq 6 \\
3 x_{1}-4 x_{2}+3 x_{3}^{+}-3 x_{3}^{-} & \geq 4 \\
7 x_{1}+5 x_{2}+x_{3}^{+}-x_{3}^{-} & \geq-4 \\
x_{1,2}, x_{3}^{+}, x_{3}^{-} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
4 x_{1}-x_{2}+3 x_{3}^{+}-3 x_{3}^{-} & \rightarrow \min \\
2 x_{1}-8 x_{2}+2 x_{3}^{+}-2 x_{3}^{-} & =6 \\
3 x_{1}-4 x_{2}+3 x_{3}^{+}-3 x_{3}^{-}-s_{1} & =4 \\
7 x_{1}+5 x_{2}+x_{3}^{+}-x_{3}^{-}-s_{2} & =-4 \\
x_{1,2}, x_{3}^{+}, x_{3}^{-} & \geq 0 \\
s_{1,2} & \geq 0
\end{aligned}
$$

e)

$$
\begin{aligned}
x_{1}^{+}-x_{1}^{-}+2 x_{2}+3 x_{3} & \rightarrow \min \\
-x_{1}^{+}+x_{1}^{-}+x_{2}-4 x_{3} & \geq-6 \\
x_{1}^{+}-x_{1}^{-}+2 x_{2}-3 x_{3} & \geq 7 \\
-x_{1}^{+}+x_{1}^{-}+2 x_{3} & \geq 3 \\
x_{1}^{+}-x_{1}^{-}-2 x_{3} & \geq 3 \\
x_{1}^{+}, x_{1}^{-}, x_{2,3} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
x_{1}^{+}-x_{1}^{-}+2 x_{2}+3 x_{3} & \rightarrow \min \\
x_{1}^{+}-x_{1}^{-}-x_{2}+4 x_{3}+s_{1} & =6 \\
x_{1}^{+}-x_{1}^{-}+2 x_{2}-3 x_{3}-s_{2} & =7 \\
x_{1}^{+}-x_{1}^{-}-2 x_{3} & =3 \\
x_{1}^{+}, x_{1}^{-}, x_{2,3} & \geq 0 \\
s_{1,2} & \geq 0
\end{aligned}
$$

Contents

\square

$$
\begin{aligned}
x_{1}^{+}-x_{1}^{-}-x_{2}^{+}+x_{2}^{-}+x_{3}^{+}-x_{3}^{-}-x_{4}^{+}+x_{4}^{-} & \rightarrow \min \\
-2 x_{1}^{+}+2 x_{1}^{-}-3 x_{2}^{+}+3 x_{2}^{-}+x_{4}^{+}-x_{4}^{-} & \geq-8 \\
2 x_{1}^{+}-2 x_{1}^{-}+3 x_{2}^{+}-3 x_{2}^{-}-x_{4}^{+}+x_{4}^{-} & \geq 8 \\
-4 x_{1}^{+}+4 x_{1}^{-}+7 x_{3}^{+}-7 x_{3}^{-}-2 x_{4}^{+}+2 x_{4}^{-} & \geq-12 \\
4 x_{1}^{+}-4 x_{1}^{-}-7 x_{3}^{+}+7 x_{3}^{-}+2 x_{4}^{+}-2 x_{4}^{-} & \geq 12 \\
x_{1}^{+}, x_{1}^{-}, x_{2}^{+}, x_{2}^{-}, x_{3}^{+}, x_{3}^{-}, x_{4}^{+}, x_{4}^{-} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
x_{1}^{+}-x_{1}^{-}-x_{2}^{+}+x_{2}^{-}+x_{3}^{+}-x_{3}^{-}-x_{4}^{+}+x_{4}^{-} & \rightarrow \min \\
2 x_{1}^{+}-2 x_{1}^{-}+3 x_{2}^{+}-3 x_{2}^{-}-x_{4}^{+}+x_{4}^{-} & =8 \\
4 x_{1}^{+}-4 x_{1}^{-}-7 x_{3}^{+}+7 x_{3}^{-}+2 x_{4}^{+}-2 x_{4}^{-} & =12 \\
x_{1}^{+}, x_{1}^{-}, x_{2}^{+}, x_{2}^{-}, x_{3}^{+}, x_{3}^{-}, x_{4}^{+}, x_{4}^{-} & \geq 0
\end{aligned}
$$

Title Page

Contents

Chapter 3

Linear Programming Duality

3.1. The Dual to Linear Programming Problem

Consider the following LP with n variables and m constraints:

$$
\begin{align*}
& \boldsymbol{c}^{\top} \cdot \boldsymbol{x} \rightarrow \min \\
& \boldsymbol{a}_{\boldsymbol{i}} \cdot \boldsymbol{x}=b_{i}, \quad \text { for } i=1, \ldots, k-1 \\
& \boldsymbol{a}_{\boldsymbol{i}} \cdot \boldsymbol{x} \geq b_{i}, \quad \text { for } i=k, \ldots, m \tag{3.1}\\
& \quad x_{j} \geq 0 \text { for } j \in N_{1} \\
& \quad x_{j} \text { is unbounded for } j \in N_{2} .
\end{align*}
$$

We could transform LPP to this form very easily by using basic transformations (2.7) - (2.11).

Definition 3.1. Consider the following LP in the form (3.1). The linear programming problem given by the following way is called a dual LPP (D) of original LPP. (3.1).

$$
\begin{align*}
& \boldsymbol{y}^{\top} \cdot \boldsymbol{b} \rightarrow \max \\
& \quad y_{i} \text { is unbounded for } i=1, \ldots, k-1 \\
& \quad y_{i} \geq 0 \quad \text { for } i=k, \ldots, m \tag{3.2}\\
& \boldsymbol{y}^{\top} \cdot A_{j} \leq c_{j} \quad \text { for } j \in N_{1} \\
& \boldsymbol{y}^{\top} \cdot A_{j}=c_{j} \quad \text { for } j \in N_{2} .
\end{align*}
$$

The original LPP is called the primal problem (P).
If the primal LPP is in the canonical form, then pair primal - dual is given as:

$$
\begin{array}{rlrl}
\boldsymbol{c}^{\top} \cdot \boldsymbol{x} & \rightarrow \min & \boldsymbol{y}^{\top} \cdot \boldsymbol{b} & \rightarrow \max \\
\boldsymbol{A} \cdot \boldsymbol{x} & \geq \boldsymbol{b} & \boldsymbol{y}^{\top} \cdot \boldsymbol{A} & \leq \boldsymbol{c} \\
\boldsymbol{x} & \geq 0 & \boldsymbol{y} & \geq 0
\end{array}
$$

If the primal LPP is in the standard form, then pair primal - dual is given
by:

$$
\begin{array}{ccc}
\boldsymbol{c}^{\top} \cdot \boldsymbol{x} & \rightarrow \min & \boldsymbol{y}^{\top} \cdot \boldsymbol{b} \rightarrow \max \\
\\
\boldsymbol{A} \cdot \boldsymbol{x} & =\boldsymbol{b} & \boldsymbol{y}^{\top} \cdot \boldsymbol{A} \leq \boldsymbol{c} \\
\boldsymbol{x} \geq 0 & y_{i} \text { is unbounded } & \text { for } i=1, \ldots, m .
\end{array}
$$

Theorem 3.1. Dual of a dual is primal.
Some basic rules for constructing of a dual.

1. if P is maximum (minimum) problem, then D is minimum (maximum) problem,
2. one constraint in D belongs to one variable in P,
3. coefficients of the objective function of P give corresponding right side in D,
4. elements of the right side in P give coefficients of the objective function in D,
5. the constraint matrix of D is transpose of the constraint matrix of P.

We clearly summarize these rules and signs of equality and inequality in primal-dual pair in the Table 3.1.

Table 3.1: Relations between primal (P) and dual (D) task of LPP.

Primal LPP (P)	\Longleftrightarrow	Dual LPP (D)
$\boldsymbol{c}^{\top} \cdot \boldsymbol{x} \rightarrow \min$	\Longleftrightarrow	$\boldsymbol{y}^{\top} \cdot \boldsymbol{b} \rightarrow \max$
$\boldsymbol{c}^{\top} \cdot \boldsymbol{x} \rightarrow \max$	\Longleftrightarrow	$\boldsymbol{y}^{\top} \cdot \boldsymbol{b} \rightarrow \min$
$\boldsymbol{a}_{\boldsymbol{i}} \cdot \boldsymbol{x} \geq b_{i}(\min)$	\Longleftrightarrow	$y_{i} \geq 0(\max)$
$\boldsymbol{a}_{\boldsymbol{i}} \cdot \boldsymbol{x} \geq b_{i}(\max)$	\Longleftrightarrow	$y_{i} \leq 0(\min)$
$\boldsymbol{a}_{\boldsymbol{i}} \cdot \boldsymbol{x} \leq b_{i}(\min)$	\Longleftrightarrow	$y_{i} \leq 0(\max)$
$\boldsymbol{a}_{\boldsymbol{i}} \cdot \boldsymbol{x} \leq b_{i}(\max)$	\Longleftrightarrow	$y_{i} \geq 0(\min)$
$\boldsymbol{a}_{\boldsymbol{i}} \cdot \boldsymbol{x}=b_{i}$	\Longleftrightarrow	$y_{i} \in(-\infty, \infty)$
$x_{j} \geq 0(\max)$	\Longleftrightarrow	$\boldsymbol{y}^{\top} \cdot A_{j} \geq c_{j}(\min)$
$x_{j} \leq 0(\max)$	\Longleftrightarrow	$\boldsymbol{y}^{\top} \cdot A_{j} \leq c_{j}(\min)$
$x_{j} \geq 0(\min)$	\Longleftrightarrow	$\boldsymbol{y}^{\top} \cdot A_{j} \leq c_{j}(\max)$
$x_{j} \leq 0(\min)$	\Longleftrightarrow	$\boldsymbol{y}^{\top} \cdot A_{j} \geq c_{j}(\max)$
$x_{j} \in(-\infty, \infty)$	\Longleftrightarrow	$\boldsymbol{y}^{\top} \cdot A_{j}=c_{j}$

See examples 3.1 and 3.2.

3.2. Primal-Dual Solutions

Theorem 3.2 (The weak duality theorem). For any feasible solution x in P (3.1) and feasible solution \boldsymbol{y} in $D(3.2)$ we have:

$$
\boldsymbol{c}^{\top} \cdot \boldsymbol{x} \geq \boldsymbol{y}^{\top} \cdot \boldsymbol{b}
$$

Corollary 3.1. If \boldsymbol{x} is feasible solution for $P(3.1), \boldsymbol{y}$ is feasible solution for D (3.2) such that:

$$
\boldsymbol{c}^{\top} \cdot \boldsymbol{x}=\boldsymbol{y}^{\top} \cdot \boldsymbol{b}
$$

then both $\boldsymbol{x}, \boldsymbol{y}$ are optimal for their respective LPP.
Corollary 3.2. If the feasible set of dual F_{D} (3.2) is not empty and its objective function is uper unbounded on F_{D}, then the primal LPP (3.1) is unfeasible.

Corollary 3.3. If the feasible set of primal $F_{P}(3.1)$ is not empty and its objective function is lower unbounded on F_{P}, then the dual LPP (3.2) is unfeasible.

Theorem 3.3 (The strong duality theorem).
(1) If either P or D has an optimal solution, then so does the other, the optimal values of objective functions are equal, and there exists optimal solutions for both P and D.
(2) If either P or D is feasible but unbounded, then the other is unfeasible.

Overview of the different options for solving a pair $P-D$:

Table 3.2: Overview of the different options for solving a pair $P-D$.

primal	dual		
	has optimum	feasible unbounded	infeasible
has optimum	$\sqrt{ }$	-	-
feasible unbounded	-	-	$\sqrt{ }$
infeasible	-	$\sqrt{ }$	$\sqrt{ }$

Theorem 3.4 (The complementary slackness theorem). Let \boldsymbol{x} and \boldsymbol{y} be feasible solution for P and D respectively. Then \boldsymbol{x} and \boldsymbol{y} are optimal solutions if, and only if:

$$
y_{i}\left(\boldsymbol{a}_{\boldsymbol{i}} \cdot \boldsymbol{x}-b_{i}\right)=0 \quad \text { for } i=1, \ldots, m
$$

and

$$
\left(c_{j}-\boldsymbol{y}^{\top} \cdot A_{j}\right) x_{j}=0 \quad \text { for } j=1, \ldots, n
$$

3.3. Solved Examples

Example 3.1. Find the dual to the following primal LPP:

$$
\begin{array}{rrrrl}
x_{1} & +x_{2} & -3 x_{3} & +x_{4} & \rightarrow \min \\
3 x_{1} & -2 x_{2} & -x_{3} & & \leq 4 \\
& x_{2} & +x_{3} & +4 x_{4} & \leq 2 \\
x_{1} & & +3 x_{3} & & \geq 3 \\
& & & x_{1-4} & \geq 0
\end{array}
$$

Contents

Go Back

Solution:

Clearly, the dual is a maximum problem, because of minimum primal. The
$\begin{array}{rrrr}3 y_{1} & & +y_{3} & 1 \\ -2 y_{1} & +y_{2} & & 1 \\ -y_{1} & +y_{2} & +3 y_{3} & -3\end{array}$
$4 y_{2} \quad 1$

We determine signs of equality and inequality with respect to the above table.
So we have a complete mathematical model of the desired dual LPP:

$$
\begin{array}{rll}
4 y_{1}+2 y_{2}+3 y_{3} & \rightarrow \max \\
3 y_{1} & +y_{3} & \leq 1 \\
-2 y_{1}+y_{2} & \leq 1 \\
-y_{1}+y_{2}+3 y_{3} & \leq-3 \\
4 y_{2} & \leq 1 \\
y_{1}, y_{2} \leq 0 ; \quad y_{3} & \geq 0
\end{array}
$$

Contents

Similarly as in the previous example 3.1, we write the coefficients of the objective function of P as right side coefficients of D, elements of right side of P as coefficients of the objective function of D a constraint matrix of D will be transpose of the constraint matrix of P :

$$
\begin{array}{rccc}
& 6 y_{2} & -8 y_{3} & \rightarrow \min \\
y_{1} & +2 y_{2} & +y_{3} & 2 \\
3 y_{1} & +2 y_{2} & -y_{3} & -1 \\
-2 y_{1} & +4 y_{2} & -y_{3} & 4
\end{array}
$$

According to known rules listed in Table, we determine signs of equality and inequality in constraints:

$$
\begin{aligned}
6 y_{2}-8 y_{3} & \rightarrow \min \\
y_{1}+2 y_{2}+y_{3} & \geq 2 \\
3 y_{1}+2 y_{2}-y_{3} & =-1 \\
-2 y_{1}+4 y_{2}-y_{3} & =4 \\
y_{1} & \leq 0 \\
y_{2} & \geq 0 \\
y_{3} & \in(-\infty, \infty)
\end{aligned}
$$

Example 3.3. Find the optimal solution of the given LPP:

$$
\begin{aligned}
30 x_{1}+48 x_{2}+12 x_{3} & \rightarrow \min \\
3 x_{1}+4 x_{2}-2 x_{3} & =1 \\
5 x_{1}+3 x_{2}+3 x_{3} & \geq-2 \\
x_{1}, x_{3} & \geq 0 \\
x_{2} & \leq 0
\end{aligned}
$$

Solution:

The dual problem of this problem has two variables and three constraints. We can solve LPP with two variables graphically. So, first we write the dual problem of the given LPP:

$$
\begin{aligned}
y_{1}-2 y_{2} & \rightarrow \max \\
3 y_{1}+5 y_{2} & \leq 30 \\
4 y_{1}+3 y_{2} & \geq 48 \\
-2 y_{1}+3 y_{2} & \leq 12 \\
y_{2} & \geq 0
\end{aligned}
$$

We represent constraints as half-planes in \mathbb{R}^{2}, see figure 3.1. When we add the nonnegativity condition for the variable y_{2}, we get the empty set of feasible solutions. Since the dual LPP is unfeasible, according to Theorem 3.3 we know that the primal LPP doesn't have the optimal solution.

Figure 3.1: Constraints for dual LPP.

Example 3.4. Find the optimal solution of the given LPP. Use a similar procedure as in the example 3.3:

$$
\begin{aligned}
3 x_{1}-x_{2}+2 x_{3}+x_{4} & \rightarrow \min \\
x_{1}+x_{2}+x_{3}+x_{4} & \geq-1 \\
x_{1}-x_{2}+x_{3}-x_{4} & \geq 3 \\
x_{1-4} & \geq 0
\end{aligned}
$$

Solution:

Similarly as in example 3.3, we have the primal with 4 variables and 3 constraints, therefore the dual contains 4 constraints and 3 variables and we know to solve it graphically. Mathematical model of dual is:

$$
\begin{aligned}
-y_{1}+3 y_{2} & \rightarrow \max \\
y_{1}+y_{2} & \leq 3 \\
y_{1}-y_{2} & \leq-1 \\
y_{1}+y_{2} & \leq 2 \\
y_{1}-y_{2} & \leq 1 \\
y_{1}, y_{2} & \geq 0
\end{aligned}
$$

We draw the feasible set and the counter line of the objective function of dual graphically. See figure 3.2.

Figure 3.2: The graphic solution of the dual.

We obtain the optimal solution by the moving of the counter line in the maximization direction: $\boldsymbol{y}^{\text {opt }}=(0,2)^{\top}, f_{D}^{o p t}(\boldsymbol{y})=6$. By the strong duality theorem, the value of the primal objective function is $f_{P}^{o p t}(\boldsymbol{x})=f_{D}^{o p t}(\boldsymbol{y})=6$.

We use the complementary slackness theorem to find the optimal solution of the primal. First, we substitute the $\boldsymbol{y}^{\text {opt }}$ into all constraints of dual and we find out which inequality is acquired as a sharp inequality:

$$
\begin{array}{rlrl}
0+2 & \leq 3 & 2 & <3 \\
0-2 & \leq-1 & -2 & <-1 \\
0+2 & \leq 2 & 2 & \leq 2 \\
0-2 & \leq 1 & -2 & <1
\end{array}
$$

According to the complementary slackness theorem we know: $\left(c_{j}-\boldsymbol{y}^{\top} \cdot A_{j}\right) x_{j}=$ 0 . For the constrain to acquire sharp, it is $\left(c_{j}-\boldsymbol{y}^{\top} \cdot A_{j}\right) \neq 0$, hence $x_{j}=0$

44 and $x_{1}=x_{2}=x_{4}=0$.
Now we apply the second part of the complementary slackness theorem: $y_{i}\left(\boldsymbol{a}_{\boldsymbol{i}}\right.$. $\left.x-b_{i}\right)=0$. We know, that $y_{2} \neq 0$, consequently, the second constraint of primal should be acquired as equality. Thus we substitute into this constraint $x_{1}=x_{2}=x_{4}=0$ and we compute x_{3}.

$$
\begin{array}{r}
0-0+x_{3}-0=3 \\
x_{3}=3
\end{array}
$$

The optimal solution of primal is $\boldsymbol{x}^{o p t}=(0,0,3,0)^{\top}$.

3.4. Exercises

3.1. Find the dual to the following primal LPP::

$$
\begin{aligned}
4 x_{1}-x_{2}+2 x_{3} & \rightarrow \max \\
-2 x_{1}+3 x_{2}+x_{3} & \geq 1 \\
4 x_{1}+2 x_{2}+2 x_{3} & \leq 6 \\
-x_{1}-x_{2}+x_{3} & =8 \\
x_{1} & \geq 0
\end{aligned}
$$

3.2. Find the dual to the following primal LPP and convert it into standard form:

$$
\begin{aligned}
-3 x_{1}+4 x_{2}+2 x_{3}-x_{4} & \rightarrow \min \\
4 x_{1}-x_{2}+2 x_{3}-x_{4} & \geq 1 \\
-2 x_{1}+x_{2}+2 x_{3}+4 x_{4} & =7 \\
-x_{1}-x_{2}+x_{3} & \leq 8 \\
x_{1,4} & \geq 0
\end{aligned}
$$

3.3. Let us have a primal of LPP:

$$
\begin{aligned}
12 x_{1}+8 x_{2} & \rightarrow \min \\
2 x_{1}+x_{2} & \geq 4 \\
2 x_{1}+3 x_{2} & \geq 8 \\
x_{1}+6 x_{2} & \geq 6 \\
x_{1,2} & \geq 0
\end{aligned}
$$

According to the complementary slackness theorem, find the optimal solution of the given primal, if we know the solution of its dual $\boldsymbol{y}^{o p t}=(5,1,0)^{\top}$.
3.4. Let us have a primal of LPP:

$$
x_{1} \leq 6
$$

According to the complementary slackness theorem, find the optimal solution of the dual, if we know the solution of the given primal $\boldsymbol{x}^{o p t}=(6 ; 1)^{\top}$.
3.5. Let us have a primal LPP:

$$
\begin{aligned}
2 x_{1}-x_{2} & \rightarrow \max \\
-3 x_{1}+x_{2} & \leq 9 \\
5 x_{1}-x_{2} & \leq 6 \\
3 x_{1}-x_{2} & \geq 1 \\
2 x_{1}+x_{2} & \leq 3 \\
x_{1,2} & \geq 0
\end{aligned}
$$

According to the complementary slackness theorem, find the optimal solution of the given primal, if we know the solution of its dual $\boldsymbol{y}^{\text {opt }}=(0,2 / 5,0,0)^{\top}$.
3.6. Let us have a primal LPP:

$$
\begin{aligned}
11 x_{1}+108 x_{2}-45 x_{3}-10 x_{4} & \rightarrow \max \\
x_{1}+26 x_{2}+2 x_{3}-2 x_{4} & \leq 9 \\
4 x_{1}+15 x_{2}-9 x_{3}+x_{4} & \leq 5 \\
x_{1,2,3,4} & \geq 0
\end{aligned}
$$

Solve the dual graphically and use it to determine the solution of the given primal (with using the complementary slackness theorem).
3.7. Let us have a primal of LPP:

$$
\begin{aligned}
x_{1}+6 x_{2}+5 x_{3} & \rightarrow \min \\
-x_{1}-2 x_{2}+x_{3} & \geq 1 \\
x_{1}-3 x_{2}+10 x_{3} & \leq-2 \\
x_{1,2,3} & \geq 0
\end{aligned}
$$

Solve the dual graphically and use this solution to determine the solution of the given primal.
3.8. Let us have a primal of LPP:

$$
\begin{aligned}
2 x_{1}-3 x_{2}+4 x_{3} & \rightarrow \max \\
x_{1}+x_{2}-2 x_{3} & \leq 5 \\
2 x_{1}-3 x_{2}+x_{3} & \leq 10 \\
x_{1,2,3} & \geq 0
\end{aligned}
$$

Solve the dual graphically and use it to determine the solution of the given problem.

3.5. Solutions

3.1

$$
\begin{aligned}
& y_{1}+6 y_{2}+8 y_{3} \rightarrow \min \\
&-2 y_{1}+4 y_{2}-y_{3} \geq 4 \\
& 3 y_{1}+2 y_{2}-y_{3}=-1 \\
& y_{1}+2 y_{2}+y_{3}=2 \\
& y_{1} \leq 0 ; y_{2} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
-y_{1}-7 y_{2}^{+}+7 y_{2}^{-}+8 y_{3} & \rightarrow \min \\
4 y_{1}-2 y_{2}^{+}+2 y_{2}^{-}+y_{3}+s_{1} & =-3 \\
-y_{1}+y_{2}^{+}-y_{2}^{-}+y_{3} & =4 \\
2 y_{1}++2 y_{2}^{+}-2 y_{2}^{-}-y_{3} & =2 \\
-y_{1}+4 y_{2}^{+}-4 y_{2}^{-}+s_{2} & =-1 \\
y_{1}, y_{2}^{+}, y_{2}^{-}, y_{3}, s_{1}, s_{2} & \geq 0
\end{aligned}
$$

$3.3 \quad \boldsymbol{x}^{\text {opt }}=(1 ; 2)^{\top}, f(\boldsymbol{x})^{\text {opt }}=28$
$3.4 \quad \boldsymbol{y}^{\text {opt }}=(-1 / 3 ; 0 ; 0 ; 4 / 3)^{\top}, f(\boldsymbol{y})^{\text {opt }}=5$
$3.5 \quad \boldsymbol{x}^{o p t}=(6 / 5 ; 0)^{\top}, f(\boldsymbol{x})^{\text {opt }}=12 / 5$
$3.6 \quad \boldsymbol{y}^{\text {opt }}=(9 / 8 ; 21 / 4)^{\top}, \boldsymbol{x}^{\text {opt }}=(0 ; 91 / 264 ; 5 / 264 ; 0)^{\top}, f(\boldsymbol{x})^{\text {opt }}=291 / 8$
3.7 The dual is feasible unbounded, so the given primal is unfeasible.

Title Page
$3.8 \quad \boldsymbol{y}^{\text {opt }}=(2-2 t ; t)^{\top}$, for $t \in\langle 0,1\rangle$ (line segment); $\boldsymbol{x}^{\text {opt }}=(5 ; 0 ; 0)^{\top}$, $f(\boldsymbol{x})^{\text {opt }}=10$

Chapter 4

Simplex Method

4.1. Simplex Method - Algorithm

Simplex method is an algorithm how we can find a optimal solution of a linear programming problem if it exists. The simplex method is a deterministic algorithm to find out whether any base exists at all and find at least one basis feasible solution. The simplex method systematically scans the basis feasible solutions such that the algorithm:
(1) never returns to a basis feasible solution already visited,
(2) finds out that the linear programming problem is unbounded,
(3) finds an optimal solution of LPP.

Let LPP be in standard form and x_{0} be a basis feasible solution corresponding to base $\mathcal{B}=\left\{A_{B(i)} ; i=1,2, \ldots, m\right\}$. We determine the number:

$$
\begin{equation*}
\theta=\min _{i=1, \ldots, m}\left\{\frac{x_{i 0}}{x_{i j}} ; \text { where } \quad x_{i j}>0\right\} \tag{4.1}
\end{equation*}
$$

Suppose that the minimum was achieved in row r such that $B(r)=k$.

$$
B^{N}(i)=\left\{\begin{array}{lll}
B(i), & \text { for } & i \neq r \tag{4.2}\\
j, & \text { for } & i=r
\end{array}\right.
$$

and new basis feasible solution $x_{i 0}^{N}$:

$$
x_{i 0}^{N}=\left\{\begin{array}{ll}
x_{i 0}-\theta \cdot x_{i j}, & \text { for } i \neq r \tag{4.3}\\
\theta, & \text { for } i=r
\end{array} .\right.
$$

Transition between basis feasible solutions is called pivoting, the element $x_{r j}$ is the pivot, the column A_{j} enters the base in position r and column $A_{B(r)}=A_{k}$ leaves base.

Simplex Table:

Denote:

$$
\begin{align*}
& z_{0}=\sum_{i=1}^{m} x_{i 0} \cdot c_{B(i)}, \tag{4.4}\\
& z_{j}=\sum_{i=1}^{m} x_{i j} \cdot c_{B(i)}, \tag{4.5}
\end{align*}
$$

for each $j=1,2, \ldots, n$. Number z_{0} is the value of objective function in basis feasible solution x_{0} and c_{j}^{R} is called relative price of column A_{j} and it holds that $c_{j}^{R}=c_{j}-z_{j}$.

Table 4.1: Simplex Method - Simplex Table

B	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
-	$-z_{0}$	c_{1}^{R}	c_{2}^{R}	c_{3}^{R}	c_{4}^{R}	c_{5}^{R}	c_{6}^{R}
A_{1}	x_{10}	1	0	0	0	a_{14}	a_{15}
A_{2}	x_{20}	0	1	0	0	a_{24}	a_{25}
A_{3}	x_{30}	0	0	1	0	a_{34}	a_{35}
A_{4}	x_{40}	0	0	0	1	a_{44}	a_{45}

Theorem 4.1 (Change in objective function value). If a pivoting step is performed in basis feasible solution x_{0} such that column A_{j} enters base, change in the objective function value is $\theta \cdot c_{j}^{R}=\theta \cdot\left(c_{j}-z_{j}\right)$.
Theorem 4.2. If there exists a column j with negative relative price $c_{j}^{R}=$ $c_{j}-z_{j}<0$, then on its entering the base the objective function value decreases by $\theta \cdot c_{j}^{R}=\theta \cdot\left(c_{j}-z_{j}\right)$.
Theorem 4.3 (Optimality criterion). If vector $\boldsymbol{c}^{R}=\boldsymbol{c}-\boldsymbol{z}$ is nonnegative, then basis feasible solution x_{0} is optimal.

Theorem 4.4 (Criterion of unboundedness). If there exists column j with $c_{j}^{R}<0$ such that for each $i: x_{i j} \leqq 0$, then the LPP is unbounded.
Remark 4.1. Let B is a square matrix corresponding to base \mathcal{B}. We can express the basis feasible solution x_{0} for base \mathcal{B} as:

$$
\begin{equation*}
\boldsymbol{x}_{0}=B^{-1} \cdot \boldsymbol{b} \tag{4.6}
\end{equation*}
$$

and the coefficients of the j-th column for the given matrix A and base B as:

$$
\begin{equation*}
\boldsymbol{x}_{j}=B^{-1} \cdot A_{j} . \tag{4.7}
\end{equation*}
$$

We can write:

$$
\begin{gather*}
z_{0}=\boldsymbol{c}_{B}^{\top} \cdot \boldsymbol{x}_{0}=\boldsymbol{c}_{B}^{\top} \cdot B^{-1} \cdot \boldsymbol{b} \tag{4.8}\\
z_{j}=\boldsymbol{c}_{B}^{\top} \cdot \boldsymbol{x}_{j}=\boldsymbol{c}_{B}^{\top} \cdot B^{-1} \cdot A_{j}, \quad \boldsymbol{z}=\boldsymbol{c}_{B}^{\top} \cdot B^{-1} \cdot A \tag{4.9}
\end{gather*}
$$

4.2. Two-Phase Algorithm of Simplex Method

As we can see in the previous section, the simplex method can be use for the linear programming problem in standard form, which the simplex table is primarily feasible (i. e. in the zero column are non-negative values) and the matrix limitation A contains m-dimensional unit sub-matrix, which forms a normal base.

If the matrix \boldsymbol{A} does not contain identity sub-matrix, we use a two-phase algorithm of the simplex method, where the first phase is called the artificial LP (the auxiliary tasks). Let LPP be given in standard form (2.5):

$$
\begin{aligned}
f(\boldsymbol{x}) & =\sum_{j=1}^{n}\left(c_{j} \cdot x_{j}\right) \rightarrow \min \\
\sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}\right) & =b_{i}, \quad \text { for } i=1, \ldots, m \\
x_{j} & \geq 0, \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

First phase: It consists of solving an artificial task:

$$
\begin{aligned}
& \varphi=\sum_{i=1}^{m} p_{i} \rightarrow \min \\
& \sum_{j=1}^{n}\left(a_{i j} \cdot x_{j}+p_{i}\right)=b_{i}, \quad \text { for } i=1, \ldots, m \\
& x_{j} \geq 0, \quad \text { for } j=1,2, \ldots, n \\
& p_{i} \geq 0, \quad \text { for } i=1,2, \ldots, m
\end{aligned}
$$

Remark 4.2. It is sufficient to add artificial variables p_{i} only to those constraints, where basis vectors are missed.

Theorem 4.5. Artificial LPP has always an optimum.
Theorem 4.6. If the optimal solution of artificial LP is $\varphi^{\mathrm{opt}} \neq 0$ then the original LP is infeasible i.e. it has no feasible solution.

Second phase: If $\varphi^{\mathrm{opt}}=0$ is true in the optimal solution of the LPP, so there are two possibilities:

1. There is no base i.e. in the optimal base remains an artificial variable:

- find a positive number in the row corresponding with artificial variable, we mark it as a pivot, and we recalculate the table with respect to the pivot.
- if it is not possible to find a pivot in the row containing artificial variable then rows are linearly dependent. Row containing artificial variable will be left out.
- enter the original objective function into in the row of the relative price coefficients and to continue by the 2nd step.

2. There is a base i. e. the optimal base has no artificial variable:

- we have a basic feasible solution of the original LPP. Replace the artificial objective function by the original objective function in the row of the relative price coefficients.
- leave out artificial columns and continue with the simplex method further.

4.3. Procedure Simplex

Suppose that T_{k} is the simplex table in the k-th iteration of the simplex algorithm.
begin

$$
\begin{aligned}
& T:=T_{k} \\
& \text { optimum }:=\text { false }
\end{aligned}
$$

unbounded := false
while (optimum $=$ false and unbounded $=$ false) do
if $\left(\boldsymbol{c}^{R} \geqq 0\right)$ then optimum $:=$ true
else choose any j such that $c_{j}^{R}>0$
if $\left(\boldsymbol{x}_{j} \leqq 0\right)$ then unbounded $:=$ true
else find $\theta=\min _{i=1, \ldots, m}\left\{\frac{x_{i 0}}{x_{i j}}\right.$; where $\left.\quad x_{i j}>0\right\}=\frac{x_{r 0}}{x_{r j}}$ pivot is $x_{r j}$
pivoting the simplex table T with respect the pivot $x_{r j}$
create a simplex table $T^{\text {new }}$ after pivoting end if end if
end while
$T_{k+1}:=T^{n e w}$
end

4.4. Solved Examples

Example 4.1. Using the simplex method solve the following task:

$$
\begin{aligned}
15 x_{1}+10 x_{2} & \rightarrow \max \\
2 x_{1}+4 x_{2} & \leq 12 \\
4 x_{1}+2 x_{2} & \leq 16 \\
2 x_{1}+2 & \geq 2 x_{2} \\
2 x_{2} & \leq 4 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution:
We rewrite the given problem of LP to the standard form in order to fill the simplex table.

$$
\begin{aligned}
-15 x_{1}-10 x_{2} & \rightarrow \min \\
2 x_{1}+4 x_{2}+s_{1} & =12 \\
4 x_{1}+2 x_{2}+s_{2} & =16 \\
-2 x_{1}+2 x_{2}+s_{3} & =2 \\
2 x_{2}+s_{4} & =4 \\
x_{1-2}, s_{1-4} & \geq 0
\end{aligned}
$$

LPP in the standard form has four constraints and six variables. We fill the simplex table with 6 rows and 8 columns.

Table 4.2: Simplex method - Initial table

B	x_{0}	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}
-	0	-15	-10	0	0	0	0
s_{1}	12	2	4	1	0	0	0
s_{2}	16	4	2	0	1	0	0
s_{3}	2	-2	2	0	0	1	0
s_{4}	4	0	2	0	0	0	1

Columns s_{1}, s_{2}, s_{3} and s_{4} (slack variables) are the basis columns and we can see them as a unit submatrix of the type 4×4 in the table. The relative prices, while relative prices must be zero in the basis columns. If the simplex table satisfies all these conditions, then this table is prepared to run the simplex algorithm.

According to the algorithm, we need to find a pivot. We must look for the columns with a negative relative price in the zero row. There are columns x_{1} and x_{2} in the Table 4.2. We select the column x_{2} and we will calculate all ratios of values in the zero column and in the column x_{2} for all positive values which are in the column x_{2}. We choose the minimum of them, i.e.
$\min \left\{\frac{12}{4}, \frac{16}{2}, \frac{2}{2}, \frac{4}{2}\right\}=1$. It is the value in the third row. Value x_{32} is pivot, it means that the column s_{3} leaves the base and the column x_{2} enters into the base. We recalculate Table 4.2 by the given pivot x_{32} and we obtain a new Simplex table see Table 4.3.

Table 4.3: Simplex method - First iteration

B	x_{0}	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}
-	10	-25	0	0	0	5	0
s_{1}	8	6	0	1	0	-2	0
s_{2}	14	6	0	0	1	-1	0
x_{2}	1	-1	1	0	0	$\frac{1}{2}$	0
s_{4}	2	2	0	0	0	-1	1

Table 4.4: Simplex method - Second iteration

B	x_{0}	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}
-	35	0	0	0	0	$-\frac{15}{2}$	$\frac{25}{2}$
s_{1}	2	0	0	1	0	1	-3
s_{2}	8	0	0	0	1	2	-3
x_{2}	2	0	1	0	0	0	$\frac{1}{2}$
x_{1}	1	1	0	0	0	$-\frac{1}{2}$	$\frac{1}{2}$

negative relative price in the sixth column. We determine the pivot (this is an element x_{26}). After the pivoting we are getting the Table 4.6:

In this new table there is not negative relative price in the zero row, so it is the optimal simplex table (see Table 4.6) and we can write the optimal solution of our problem as: $\boldsymbol{x}^{\text {opt }}=\left(\frac{10}{3}, \frac{4}{3}\right)^{\top}$. The value of the objective function is $f^{\text {opt }}=-\frac{190}{3}$. The optimal value of the original objective function is $f^{\text {opt }}=\frac{190}{3}$.

Table 4.5: Simplex method - Third iteration

B	x_{0}	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}
-	50	0	0	$\frac{15}{2}$	0	0	-10
s_{3}	2	0	0	1	0	1	-3
s_{2}	4	0	0	-2	1	0	3
x_{2}	2	0	1	0	0	0	$\frac{1}{2}$
x_{1}	2	1	0	$\frac{1}{2}$	0	0	-1

Table 4.6: Simplex method - Optimal table

s_{3}	6	0	0	-1	1	1	0
s_{4}	$\frac{4}{3}$	0	0	$-\frac{2}{3}$	$\frac{1}{3}$	0	1
x_{2}	$\frac{4}{3}$	0	1	$\frac{1}{3}$	$-\frac{1}{6}$	0	0
x_{1}	$\frac{10}{3}$	1	0	$-\frac{1}{6}$	$\frac{1}{3}$	0	0

Example 4.2. Using the simplex method solve the following task:

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3}-2 x_{4}+x_{5}-x_{6} & \rightarrow \min \\
x_{1}+x_{2}-x_{3}+x_{4}+x_{5} & =4 \\
x_{1}-x_{2}+2 x_{3}-x_{4}+x_{6} & =3 \\
x_{1-6} & \geqq 0
\end{aligned}
$$

Solution:

The identity submatrix is composed of columns x_{5} and x_{6}, but the relative prices of these columns are not zero. Therefore, we must first modify the simplex table such that there were zero relative prices. Then the simplex table will be ready to run an algorithm that finds an optimal solution, if any, see Table 4.8.

Table 4.8: Simplex method - Initial table

B	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
-	-1	1	0	2	-4	0	0
x_{5}	4	1	1	-1	1	1	0
x_{6}	3	1	-1	2	-1	0	1

We have only one negative relative price (-4) in the zero row and in this column we look for the pivot. There is only one positive number 1, it is the pivot. We recalculate the table with respect to that pivot and we get a new simplex table.

Table 4.9: Simplex method - First iteration

B	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
-	15	5	4	-2	0	4	0
x_{4}	4	1	1	-1	1	1	0
x_{6}	7	2	0	1	0	1	1

The next pivot can be found in column x_{3} and again there is the only one positive number in this column, it is 1 . We recalculate the table with respect
to that pivot and we get a new simplex table, see Table 4.10.
Table 4.10: Simplex method - Optimal simplex table

B	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
-	29	9	4	0	0	6	2
x_{4}	11	3	1	0	1	2	1
x_{3}	7	2	0	1	0	1	1

This simplex table is optimal, because in the zero row there are not negative relative prices. The optimal solution of our problem is $\boldsymbol{x}^{\mathrm{opt}}=$ $(0,0,7,11,0,0)^{\top}$ and the value of the objective function is $f^{\text {opt }}=-29$.

Example 4.3. Using the simplex method solve the following task:

$$
\begin{aligned}
x_{1}-x_{2}+x_{3}-3 x_{4}+x_{5}-x_{6}-3 x_{7} & \rightarrow \min \\
3 x_{3}+x_{5}+x_{6} & =6 \\
x_{2}+2 x_{3}-x_{4} & =10 \\
-x_{1}+x_{6} & =0 \\
x_{3}+x_{6}+x_{7} & =6 \\
x_{1-7} & \geq 0
\end{aligned}
$$

Solution:

Our LPP is in standard form with 4 constraints and 7 variables. The simplex table has 6 rows and 9 columns, see Table 4.11.

Table 4.11: Simplex method - Filled in the simplex table

B	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
-	0	1	-1	1	-3	1	-1	-3
	6	0	0	3	0	1	1	0
	10	0	1	2	-1	0	0	0
	0	-1	0	0	0	0	1	0
	6	0	0	1	0	0	1	1

Contents
full Screan

Table 4.12: Simplex method - Modified table

B	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
-	0	1	-1	1	-3	1	-1	-3
x_{5}	6	0	0	3	0	1	1	0
x_{2}	10	0	1	2	-1	0	0	0
x_{1}	0	1	0	0	0	0	-1	0
x_{7}	6	0	0	1	0	0	1	1

Table 4.13: Simplex method - Initial table

B	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
-	22	0	0	3	-4	0	2	0
x_{5}	6	0	0	3	0	1	1	0
x_{2}	10	0	1	2	-1	0	0	0
x_{1}	0	1	0	0	0	0	-1	0
x_{7}	6	0	0	1	0	0	1	1

negative relative price we can not find pivot, because all values in this column are non positive. Therefore simplex algorithm ends and the outcome is that the task LP is indeed feasible, but unbounded.

Example 4.4. Using the simplex method solve the following task:

$$
\begin{aligned}
-2 x_{1}-x_{2}+x_{3} & \rightarrow \max \\
x_{1}-x_{2}+x_{3} & =2 \\
-2 x_{1}+x_{2}+x_{3} & =4 \\
x_{1-3} & \geq 0
\end{aligned}
$$

Solution:
We have to rewrite LPP in a standard form.

$$
\begin{aligned}
2 x_{1}+x_{2}-x_{3} & \rightarrow \min \\
x_{1}-x_{2}+x_{3} & =2 \\
-2 x_{1}+x_{2}+x_{3} & =4 \\
x_{1-3} & \geq 0
\end{aligned}
$$

The LPP is in the standard form with 2 constraints and 3 variables. We fill in the simplex table, which has 4 rows and 5 columns, see Table 4.14.

There is not an identity submatrix in this simplex table and we do not know how to get it by any simple modification. Therefore, we must first solve

Table 4.14: Simplex method - Filled in the simplex table

B	x_{0}	x_{1}	x_{2}	x_{3}
-	0	2	1	-1
	2	1	-1	1
	4	-2	1	1

the artificial task bz which we determine a basis columns. We need to add two artificial variables p_{1} and p_{2}. Artificial LPP has the form:

The Simplex table of artificial LPP in the standard form, see Table 4.15.
This artificial LPP is solved by the same simplex algorithm as in Example 4.2. Firstly we need to create a zero relative prices on the columns of identity submatrix.

The relative price is negative in the column x_{3}. We calculate $\min \left\{\frac{2}{1} ; \frac{4}{1}\right\}$ $=2$. The variable p_{1} leaves the base and the variable x_{3} enters into the base. We use pivot operation for the table and we get new table:

Table 4.15: Simplex method - Artificial LPP

B	x_{0}	x_{1}	x_{2}	x_{3}	p_{1}	p_{2}
-	0	0	0	0	1	1
p_{1}	2	1	-1	1	1	0
p_{2}	4	-2	1	1	0	1

Table 4.16: Simplex method - Artificial LPP

B	x_{0}	x_{1}	x_{2}	x_{3}	p_{1}	p_{2}
-	-6	1	0	-2	0	0
p_{1}	2	1	-1	1	1	0
p_{2}	4	-2	1	1	0	1

We are looking for the negative relative price in the zero row. The relative price is negative in the column x_{2}. In this column there is only one positive value, so it is clearly the pivot. The variable p_{2} leaves from the base and x_{2} enters into the base. We can pivot this table and we get a new simplex table, see Table 4.18.

We got the optimal table. The artificial variables are not in the base and the value of objective function is 0 . Simultaneously we also have identity

Table 4.17: Simplex method - Artificial LPP

B	x_{0}	x_{1}	x_{2}	x_{3}	p_{1}	p_{2}
-	-2	3	-2	0	2	0
x_{3}	2	1	-1	1	1	0
p_{2}	2	-3	2	0	-1	1

Table 4.18: Simplex method - Artificial LPP

B	x_{0}	x_{1}	x_{2}	x_{3}	p_{1}	p_{2}
-	0	0	0	0	1	1
x_{3}	3	$-\frac{1}{2}$	0	1	$\frac{1}{2}$	$\frac{1}{2}$
x_{2}	1	$-\frac{3}{2}$	1	0	$-\frac{1}{2}$	$\frac{1}{2}$

submatrix of the table without the last two columns, which correspond to the artificial variables. It means that we finished artificial task of LPP and we begin to solve our original task. We create a new simplex table which does not contain the last two columns of artificial variables and zero row will include the coeficients of the objective function in standard form.

Table 4.19 has an identity submatrix, which is composed of the columns x_{3} and x_{2}. We modify this simplex table so that we have a zero relative prices

Table 4.19: Simplex method - Second phase

B	x_{0}	x_{1}	x_{2}	x_{3}
-	0	2	1	-1
x_{3}	3	$-\frac{1}{2}$	0	1
x_{2}	1	$-\frac{3}{2}$	1	0

of these columns, see Table 4.20.

Table 4.20: Simplex method - Second phase - Initial step

B	x_{0}	x_{1}	x_{2}	x_{3}
-	2	3	0	0
x_{3}	3	$-\frac{1}{2}$	0	1
x_{2}	1	$-\frac{3}{2}$	1	0

We have got the optimal Simplex table, because there are no negative relative prices in the zero row. The optimal solution of our problem is $\boldsymbol{x}^{\text {opt }}=$ $(0,1,3)^{\top}$ and the value of the objective function is $f^{\mathrm{opt}}=-2$.

Example 4.5. Using the simplex method solve the following task:

$$
\begin{aligned}
-x_{1}+2 x_{2}-3 x_{3} & \rightarrow \max \\
-2 x_{1}+x_{2}+3 x_{3} & =2 \\
2 x_{1}+3 x_{2}+4 x_{3} & =1 \\
x_{1-3} & \geq 0
\end{aligned}
$$

We write the standard form of given LPP.

$$
\begin{aligned}
x_{1}-2 x_{2}+3 x_{3} & \rightarrow \min \\
-2 x_{1}+x_{2}+3 x_{3} & =2 \\
2 x_{1}+3 x_{2}+4 x_{3} & =1 \\
x_{1-3} & \geq 0
\end{aligned}
$$ submatrix. First we create artificial task which determines us a basis columns. In our case, we add two artificial variable p_{1} and p_{2}. Artificial task of LPP has the form:

$$
\begin{aligned}
p_{1}+p_{2} & \rightarrow \min \\
-2 x_{1}+x_{2}+3 x_{3}+p_{1} & =2 \\
2 x_{1}+3 x_{2}+4 x_{3}+p_{2} & =1 \\
x_{1-3}, p_{1}, p_{2} & \geq 0
\end{aligned}
$$

Table 4.21: Simplex method - Initial table

B	x_{0}	x_{1}	x_{2}	x_{3}
-	0	1	-2	3
	2	-2	1	3
	1	2	3	4

The simplex table is in the form:
Table 4.22: Simplex method - Artificial task

B	x_{0}	x_{1}	x_{2}	x_{3}	p_{1}	p_{2}
-	0	0	0	0	1	1
p_{1}	2	-2	1	3	1	0
p_{2}	1	2	3	4	0	1

This artificial task is solved by the same simplex algorithm as in the previous example. First, we need to create a zero relative prices over the identity submatrix:

In the zero row, we have two negative relative prices. We select a column x_{3} and determine the pivot. We calculate $\min \left\{\frac{2}{3}, \frac{1}{4}\right\}=\frac{1}{4}$.

Table 4.23: Simplex method - Artificial task

B	x_{0}	x_{1}	x_{2}	x_{3}	p_{1}	p_{2}
-	-3	0	-4	-7	0	0
p_{1}	2	-2	1	3	1	0
p_{2}	1	2	3	4	0	1

Table 4.24: Simplex method - Artificial task

B	x_{0}	x_{1}	x_{2}	x_{3}	p_{1}	p_{2}
-	$-\frac{5}{4}$	$\frac{7}{2}$	$\frac{5}{4}$	0	0	$\frac{7}{4}$
p_{1}	$\frac{5}{4}$	$-\frac{7}{2}$	$-\frac{5}{4}$	0	1	$-\frac{3}{4}$
p_{2}	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1	0	$\frac{1}{4}$

We got the optimal table of the artificial task in which one artificial variable is not in the base, but the second artificial variable p_{1} remained in the base i. e. $x^{\text {art }}=\left(0,0, \frac{1}{4}, 0\right)^{T}$ and the value of the objective function is $f^{\text {art }}=-\frac{5}{4} \neq 0$. This means that the original LPP have not a basis feasible solution, i. e given LPP is infeasible.

4.5. Exercised

4.1. Using the simplex method, find solutions of following linear programming problems:
a)

$$
\begin{aligned}
-x_{1}+x_{2}+x_{3}+2 x_{4} & \rightarrow \max \\
x_{1}+10 x_{3}-4 x_{4} & =25 \\
x_{2}+2 x_{3}+3 x_{4} & =26 \\
x_{1,2,3,4} & \geq 0
\end{aligned}
$$

b)

$$
\begin{aligned}
-x_{1}+3 x_{2} & \rightarrow \max \\
2 x_{1}+x_{2} & \geq 6 \\
x_{1}+2 x_{2} & \geq 6 \\
4 x_{1}-x_{2}+x_{3} & =15 \\
x_{1,2,3} & \geq 0
\end{aligned}
$$

Full Screen

Close
c)

$$
\begin{aligned}
x_{1}+2 x_{2} & \rightarrow \max \\
10 x_{1}-4 x_{2} & \leq 25 \\
-2 x_{1}+3 x_{2} & \leq 6 \\
x_{1,2} & \geq 0
\end{aligned}
$$

Title Page

Contents

$$
\begin{aligned}
7 x_{1}-42 x_{2} & \rightarrow \min \\
3 x_{1}+5 x_{2} & \leq 15 \\
x_{1}+x_{2} & \geq 6 \\
x_{1,2} & \geq 0
\end{aligned}
$$

d)
e)

$$
\begin{aligned}
-3 x_{1}-x_{2}+x_{3}+2 x_{4} & \rightarrow \min \\
2 x_{1}-x_{3}-x_{4} & =0 \\
x_{1}+x_{2} & =10 \\
x_{1}+3 x_{3} & =4 \\
x_{1,2,3,4} & \geq 0
\end{aligned}
$$

f)

$$
\begin{aligned}
3 x_{1}+2 x_{2}+4 x_{3} & \rightarrow \max \\
x_{1}+x_{2}+2 x_{3} & \leq 4 \\
2 x_{1}+x_{3} & \leq 5 \\
2 x_{1}+x_{2}+3 x_{3} & \leq 7 \\
x_{1,2,3} & \geq 0
\end{aligned}
$$

g)

$$
\begin{aligned}
2 x_{1}+3 x_{2}+3 x_{3} & \rightarrow \max \\
3 x_{1}+2 x_{2}+x_{4} & =60 \\
x_{1}-x_{2}-4 x_{3} & \geq-10 \\
2 x_{1}-2 x_{2}+5 x_{3} & \leq 50 \\
x_{1,2,3,4} & \geq 0
\end{aligned}
$$

h)

$$
\begin{aligned}
x_{1}-2 x_{2}-3 x_{3}-x_{4} & \rightarrow \max \\
x_{1}-x_{2}-2 x_{3}-x_{4} & \leq 4 \\
2 x_{1}+x_{3}-4 x_{4} & \leq 2 \\
-2 x_{1}+x_{2}+x_{4} & \leq 1 \\
x_{1,2,3,4} & \geq 0
\end{aligned}
$$

4.2. Solve the linear programming problem which is given in the example 2.3.
4.3. Solve the linear programming problem which is given in the example 2.4.
4.4. Solve the linear programming problem which is given in the example 2.5.
4.5. Solve the linear programming problem which is given in the example 2.6.
4.6. Solve the linear programming problem which is given in the example 2.8 .
4.7. Solve the linear programming problem which is given in the example 2.9.

4.6. Solutions

$4.1 \quad$ a) $\quad \boldsymbol{x}^{o p t}=(0 ; 21 ; 5 / 2 ; 0)^{\top}, f(\boldsymbol{x})^{o p t}=47 / 2$
b) The LPP is faesible but unbounded.
c) $\quad \boldsymbol{x}^{\text {opt }}=(9 / 2 ; 5)^{\top}, f(\boldsymbol{x})^{\text {opt }}=29 / 2$
d) The LPP is unfeasible.
e) $\quad \boldsymbol{x}^{o p t}=(4 / 7 ; 66 / 7 ; 8 / 7 ; 0)^{\top}, f(\boldsymbol{x})^{\text {opt }}=-10$

4
f) $\quad \boldsymbol{x}^{o p t}=(5 / 2 ; 3 / 2 ; 0)^{\top}, f(\boldsymbol{x})^{o p t}=21 / 2$
g) $\quad \boldsymbol{x}^{o p t}=(8 ; 18 ; 0 ; 0)^{\top}, f(\boldsymbol{x})^{o p t}=70$
h) $\boldsymbol{x}^{\text {opt }}=(7 ; 0 ; 0 ; 3)^{\top}, f(\boldsymbol{x})^{\text {opt }}=4$
4.2 MBF: $\$ 7500$; CD: $\$ 2500$; H-RF: $\$ 2000$. Profit is $\$ 965$ per year.
4.3 This LPP hasn't any feasible solution.
4.4 The farmer reaches the biggest profit $\$ 3200$ if: 4 hectares for wheat; 4 hectares for rye.
4.5 Source A: 2 tons; source B: 4 tons. The biggest daily yield of gold is 16 oz.
4.6 Carpenter's plan: $4 / 3$ tables, $32 / 3$ chairs. The biggest profit is $£ 440 / 3$.
4.7 The company reaches the biggest daily profit $\$ 650$ if it produces 100 scientific calculators and 170 graphing calculators daily.

Title Page

Contents

Chapter 5

\square
 Dual Simplex Method

5.1. Dual Simplex Method - Algorithm

The dual algorithm of the simplex method is used to solve the primary tasks of the linear programming problem. However, while the primary simplex algorithm must have the primary feasible table, the dual algorithm we use, if the table is not primarily feasible (the primary algorithm cannot be used), but the table is dual feasible. The dual algorithm is compared with the primary algorithm like the primary a little bit modified. The coefficients \boldsymbol{c} of the objective function and the right sides \boldsymbol{b} have an inverse role. There also moves from one basis feasible solution to another, but we try to maintain the
dual feasibility. The pivot is choosen by another way:

- Choose the pivot in the i-th row, where the value $x_{i 0}<0$.
- For all $x_{i j}<0$ calculate $\frac{x_{0 j}}{x_{i j}}$ in the i-th row and we determine the λ.

$$
\lambda=\frac{x_{0 k}}{x_{i k}}=\max \left\{\frac{x_{0 j}}{x_{i j}} ; \text { for } j \text { such that } x_{i j}<0\right\} .
$$

- Thus determined $x_{i k}$ is a pivot and the table is pivoted by the same way as in the primary simplex algorithm.

We describe in the table 5.1 on the page 148 how to determining the pivot in the primary and the dual simplex method algorithm.

Table 5.1: Determining the pivot in the primary and the dual simplex method algorithm.

Primary algorithm of the SM	Dual algorithm of the SM
choose j-th column to the base	choose i-th row out of the base so that $x_{i 0}<0$
calculate $\frac{x_{i 0}}{x_{i j}}, \forall x_{i j}>0$ in j-th column	calculate $\frac{x_{0 j}}{x_{i j}}, \forall x_{i j}<0$ in i-th row
$\frac{x_{k 0}}{x_{k j}}=$ $=\min \left\{\frac{x_{i 0}}{x_{i j}} ;\right.$ for i such that $\left.x_{i j}>0\right\}$	$\frac{x_{0 k}}{x_{i k}}=$ $=\max \left\{\frac{x_{0 j}}{x_{i j}} ;\right.$ for j such that $\left.x_{i j}<0\right\}$
pivot is the element $x_{k j}$ (must be posi- tive)	pivot is the element $x_{i k}$ (must be nega- tive)
if in the each column, where $x_{0 j}<0$, is each $x_{i j} \leq 0$, then LPP is unbounded	if in the each column, where $x_{i 0}<0$, is each $x_{i j} \geq 0$, then LPP is unfeasible

5.2. Procedure Dual Simplex

Suppose that T_{k} is the simplex table in the k-th iteration of the simplex algorithm.

```
begin
    \(T:=T_{k}\)
    optimum := false
    unbounded := false
    while (optimum \(=\) false and unbounded \(=\) false ) do
        if \(\left(x_{i 0} \geqq 0\right)\) then optimum \(:=\) true
        else choose any \(i\) such that \(x_{i 0}<0\)
                        if \(\left(\forall j x_{i j} \geqq 0\right) \quad\) then unbounded \(:=\) true
                        else find
                                    \(\lambda=\frac{x_{0 k}}{x_{i k}}=\)
                                    \(=\max \left\{\frac{x_{0 j}}{x_{i j}}\right.\); for \(j\) such that \(\left.x_{i j}<0\right\}\)
                                    pivot is \(x_{i k}\)
                                    pivoting the simplex table \(T\)
                                    with respect the pivot \(x_{i k}\)
                                    create a simplex table \(T^{\text {new }}\)
                                    after pivoting
                        end if
        end if
    end while
    \(T_{k+1}:=T^{n e w}\)
end
```

 Contents

5.3. Solved Examples

Example 5.1. Solve the following problem using the simplex method:

$$
\begin{aligned}
3 x_{1}+2 x_{2}+3 x_{3} & \rightarrow \min \\
x_{1}-x_{2}-x_{3} & \geq 2 \\
x_{1}+x_{2}+x_{3} & \geq 4 \\
x_{1}-2 x_{2}+x_{3} & \geq 1 \\
x_{1-3} & \geq 0
\end{aligned}
$$

Solution:

The LPP is converted into a standard form.

$$
\begin{aligned}
3 x_{1}+2 x_{2}+3 x_{3} & \rightarrow \min \\
x_{1}-x_{2}-x_{3}-s_{1} & =2 \\
x_{1}+x_{2}+x_{3}-s_{2} & =4 \\
x_{1}-2 x_{2}+x_{3}-s_{3} & =1 \\
x_{1-3}, s_{1-3} & \geq 0
\end{aligned}
$$

The LPP in standard form has three constrains and six variables. We are fill the simplex table with five rows and eight columns.
In this table we do not have the unit submatrix. We can multiply each row by the number (-1) and we receive the unit submatrix, but the simplex table would be primarily unfeasible. See Table 5.3

Table 5.2: Dual simplex method - First step.

B	x_{0}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}
-	0	3	2	3	0	0	0
	2	1	-1	-1	-1	0	0
	4	1	1	1	0	-1	0
	1	1	-2	1	0	0	-1

Table 5.3: Dual simplex method - Second step.

B	x_{0}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}
-	0	3	2	3	0	0	0
s_{1}	-2	-1	1	1	1	0	0
s_{2}	-4	-1	-1	-1	0	1	0
s_{3}	-1	-1	2	-1	0	0	1

This table is dual feasible. We use the Dual Simplex Method. We choose a negative value in the zero row. If we find the pivot in this row, then the variable corresponding to the choosen row goes out of the base and variable in which column we found the pivot goes to the base. We choose the last row
and we have to determine the pivot in this row. We calculate $\max \left\{\frac{3}{-1} ; \frac{3}{-1}\right\}=$ -3 . Let us choose a pivot in the first column x_{1}. We pivotal the table with respect to the specified pivot and we get a new simplex table, which is still primarily unfeasible, but the dual feasible - Table 5.4. We again select the pivot under the dual simplex method.

Table 5.4: Dual simplex method - Third step.

B	x_{0}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}
-	-3	0	8	0	0	0	3
s_{1}	-1	0	-1	2	1	0	-1
s_{2}	-3	0	-4	0	0	1	-1
x_{1}	1	1	-2	1	0	0	-1

We find a negative value in the zero column and in this row we determine the pivot. Let it be the second row, in which we determine the pivot. we calculate $\max \left\{\frac{8}{-4} ; \frac{3}{-1}\right\}=-2$. The element x_{2} enter to the base and s_{2} goes out from the base. We recalculate the table with respect to the specified pivot, see Table 5.5.
We have only one negative value in the zero column. We determine the pivot in the first row. Calculate $\max \left\{\frac{2}{-\frac{1}{4}}, \frac{1}{-\frac{3}{4}}\right\}=-\frac{4}{3}$. The variable s_{3} goes to the base and variable s_{1} goes out from the base.

Table 5.5: Dual simplex method - Fourth step.

B	x_{0}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}
-	-9	0	0	0	0	2	1
s_{1}	$-\frac{1}{4}$	0	0	2	1	$-\frac{1}{4}$	$-\frac{3}{4}$
x_{2}	$\frac{3}{4}$	0	1	0	0	$-\frac{1}{4}$	$\frac{1}{4}$
x_{1}	$\frac{5}{2}$	1	0	1	0	$-\frac{1}{2}$	$-\frac{1}{2}$

Table 5.6: Dual simplex method - Fifth step.

B	x_{0}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}
-	$-\frac{28}{3}$	0	0	$\frac{8}{3}$	$\frac{4}{3}$	$\frac{5}{3}$	0
s_{1}	$\frac{1}{3}$	0	0	$-\frac{8}{3}$	$-\frac{4}{3}$	$\frac{1}{3}$	1
x_{2}	$\frac{2}{3}$	0	1	$\frac{2}{3}$	$\frac{1}{3}$	$-\frac{1}{3}$	0
x_{1}	$\frac{8}{3}$	1	0	$-\frac{1}{3}$	$-\frac{2}{3}$	$-\frac{1}{3}$	0

We obtained an optimal Table 5.6 with an optimal solution of LPP: $\boldsymbol{x}^{\text {opt }}=$ $\left(\frac{8}{3}, \frac{2}{3}, 0\right)^{\top}$ and the value of the objective function is $f^{\text {opt }}=\frac{28}{3}$.

5.4. Exercises

5.1. Using the dual simplex method, find solutions of the following linear programming problems:
a)

$$
\begin{aligned}
6 x_{1}+4 x_{2}+7 x_{3} & \rightarrow \min \\
x_{1}+3 x_{3} & \geq 5 \\
3 x_{1}+x_{2}+x_{3} & \geq 2 \\
-x_{1}+x_{2} & \geq 1 \\
x_{1,2,3} & \geq 0
\end{aligned}
$$

\square
b)

$$
\begin{aligned}
-x_{1}-2 x_{2}-x_{3} & \rightarrow \max \\
-2 x_{1}+3 x_{3} & \geq-1 \\
2 x_{1}-x_{2}+x_{3} & \geq 1 \\
3 x_{1}+2 x_{2}-x_{3} & \geq 0 \\
x_{1,2,3} & \geq 0
\end{aligned}
$$

5.2. In order to ensure optimal health, a lab technician needs to feed rabbits a daily diet containing a minimum of 24 g of fat, 36 g of carbohydrates, and 4 g of protein. But the rabbits should be fed no more than five ounces of food a day. Rather than order rabbit food that is custom-blended, it is cheaper to order Food X and Food Y , and blend them for an optimal mix. Food X contains 8 g of fat, 12 g of carbohydrates, and 2 g of protein per ounce, and costs $0,20 \$$ per ounce. Food Y contains 12 g of fat, 12 g of carbohydrates, and 1 g of protein per ounce, at a cost of $0,30 \$$ per ounce.
a) What is the optimal blend?
b) Solve this problem, if food X contains 8 g of fat, 6 g of carbohydrates, and 2 g of protein per ounce.

5.5. Solutions

$5.1 \quad$ a) $\quad x^{o p t}=(0 ; 1 ; 5 / 3)^{\top}, f(x)^{o p t}=47 / 3$
Title Page
b) $\quad \boldsymbol{x}^{o p t}=(1 / 2 ; 0 ; 0)^{\top}, f(\boldsymbol{x})^{\text {opt }}=-1 / 2$
5.2 a) 3 ounces of $\mathrm{X}, 0$ ounces of Y
b) $2 / 3$ ounces of X, $8 / 3$ ounces of Y

Chapter 6

Integer Linear Programing Problem

6.1. Formulation of the Integer Linear Programing Problem

Definition 6.1 (ILP Problem). The linear programming problem is called the integer linear programming problem if it is in the following form:

$$
f(\boldsymbol{x})=\boldsymbol{c}^{\top} \cdot \boldsymbol{x} \rightarrow \min (\max)
$$

$$
\sum_{i=1}^{m} \boldsymbol{a}_{\boldsymbol{i}} \cdot \boldsymbol{x}\left\{\begin{array}{l}
\leq \tag{6.1}\\
= \\
\geq
\end{array}\right\} \boldsymbol{b}
$$

$$
x_{j} \leq \geq 0 ; \quad x_{j} \in \mathbb{Z} ; \quad j=1,2, \ldots, n, \text { where }
$$

coefficients of the objective function, coefficients of the right hand sides and elements of the matrix of constrains are integers.

Remark 6.1. The matrix notation of ILPP with n variables and m constrains in the standard form is as follows:

$$
\begin{aligned}
f(\boldsymbol{x}) & =\boldsymbol{c}^{\top} \cdot \boldsymbol{x} \rightarrow \min \\
\boldsymbol{A} \cdot \boldsymbol{x} & =\boldsymbol{b} \\
x_{i} & \geq 0 ; \quad x_{j} \in \mathbb{Z} ; \quad \text { for } j=1,2, \ldots, n, \\
\boldsymbol{A} & \in \mathbb{Z}^{m \times n} ; \quad \boldsymbol{c} \in \mathbb{Z}^{n} ; \quad \boldsymbol{b} \in \mathbb{Z}^{m} .
\end{aligned}
$$

In general, it is sufficient to require only unknown vector \boldsymbol{x} to be an integer. If not all variables are required to be integer we called it as - mixed program.

Definition 6.2. If in the task of the integer linear programming problem (6.1) is the condition that variables $\left(x \in \mathbb{Z}^{n}\right)$ are integer is omitted, we obtain the task of the linear programming problem, which is called the relaxation of ILP (6.1).

Remark 6.2. We denote:

- Feasible set of LPP as $F_{L P P}$
- Feasible set of ILPP as $F_{I L P P}$
- Sets of optimal solutions of LPP as $F_{L P P}^{o p t}$
- Sets of optimal solutions of ILPP as $F_{I L P P}^{o p t}$
- Optimal values of objective functions of LPP as $f_{L P P}^{o p t}$
- Optimal values of objective functions of ILPP as $f_{I L P P}^{o p t}$

Theorem 6.1. [Relation between ILPP and its relaxation - 1] The following holds: $F_{I L P P} \subseteq F_{L P P}$.

Theorem 6.2 (Relation between ILPP and its relaxation - 2). If an optimal solution of relaxation of ILPP (6.1) is an integer, then it is an optimal solution of ILP (6.1) too.

Theorem 6.3 (Relation between ILPP and its relaxation - 3). Let all the entries of the matrix \boldsymbol{A} and vector \boldsymbol{b} be integer. If the relaxation of ILP is

Full Screen

 unbonded and $F_{I L P P}$ is nonempty, then ILPP is unbounded too.Theorem 6.4 (Relation between ILPP and its relaxation - 4). If relaxation of ILPP (6.1) is infeasible, then ILP (6.1) is infeasible too.

See example 6.10.

6.2. Integer Linear Programing Problem in \mathbb{R}^{2}

This subsection lists some examples of two-variable ILPs and their representatiosn in \mathbb{R}^{2}.

In the following examples you graphically draw the set of feasible solutions
Contents

Solution:
In the figure 6.1 we can see the set of feasible solutions (left figure) of the relaxation ILPP. This relaxation has one optimal solution $\boldsymbol{x}_{r}^{\text {opt }}=(7 / 8,15 / 4)^{\top}$, which is not an integer solution. The set of feasible solution of ILPP is shown on the right figure - it is the set of marked points. There is one optimal solution of ILPP: $\boldsymbol{x}^{o p t}=(1,3)^{\top}$.

Figure 6.1: The graphical representation of the ILPP - example 6.1.

Example 6.2. Let we have ILPP:

$$
\begin{aligned}
x_{1}+x_{2} & \rightarrow \max \\
10 x_{1}+7 x_{2} & \leq 35 \\
-2 x_{1}+x_{2} & \leq 2 \\
x_{1}, x_{2} & \geq 0 ; \quad x_{1}, x_{2} \in \mathbb{Z} .
\end{aligned}
$$

Solution:
In the figure 6.2 we can see the set of feasible solutions (left figure) of the
relaxation ILPP. This relaxation has one optimal solution $\boldsymbol{X}_{r}^{\text {opt }}=(7 / 8,15 / 4)^{\top}$, which is not an integer solution. The set of feasible solution of ILPP is shown on the right figure - it is the set of marked points. We can see that the given ILPP has two optimal solutions: $\boldsymbol{x}_{1}^{\text {opt }}=(1,3)^{\top}$ and $\boldsymbol{x}_{2}^{\text {opt }}=(2,2)^{\top}$.

Figure 6.2: The graphical representation of the ILPP - example 6.2.

Example 6.3. Let us have ILPP:

$$
\begin{aligned}
x_{1}+x_{2} & \rightarrow \max \\
10 x_{1}+8 x_{2} & \geq 41 \\
3 x_{1}+2 x_{2} & \leq 12 \\
-x_{1}+2 x_{2} & \leq 2 \\
x_{1}, x_{2} & \geq 0 ; \quad x_{1}, x_{2} \in \mathbb{Z} .
\end{aligned}
$$

Solution:

In the figure 6.3 we can see the set of feasible solutions of the relaxation ILPP (left side of figure). This relaxation has one optimal solution $\boldsymbol{x}_{r}^{o p t}=$ $(5 / 2,9 / 4)^{\top}$, but it is not integer solution. The set of feasible solution of ILPP is shown on the right figure - it is the empty set. This means that the ILPP is infeasible.

Figure 6.3: The graphical representation of the ILPP - example 6.3.

Example 6.4. Let us have ILPP:

$$
\begin{aligned}
x_{1}-x_{2} & \rightarrow \max \\
7 x_{1}+2 x_{2} & \geq 14 \\
4 x_{1}+9 x_{2} & \leq 45 \\
x_{1}-x_{2} & \leq 3 \\
x_{1}, x_{2} & \geq 0 ; \quad x_{1}, x_{2} \in \mathbb{Z} .
\end{aligned}
$$

Solution:

The set of feasible solutions of relaxation of the given ILPP is drawn on the right side of the figure 6.4. This relaxation has more than one optimal solution - an infinite number of optimal solutions. The set of optimal solutions of relaxation is the line segment $\overline{B C}$. The set of feasible solutions of the given ILPP is drawn on the left side of the figure 6.4. It has more then one (three) optimal solutions $\boldsymbol{x}^{o p t} \in\left\{(3,0)^{\top},(4,1)^{\top},(5,2)^{\top}\right\}$.

Figure 6.4: The graphical representation of the ILPP - example 6.4.

Example 6.5. Next ILPP is given by:

$$
\begin{aligned}
-3 x_{1}+x_{2} & \rightarrow \min \\
7 x_{1}+2 x_{2} & \geq 14 \\
4 x_{1}+9 x_{2} & \leq 45 \\
6 x_{1}-2 x_{2} & \leq 23 \\
x_{1}, x_{2} & \geq 0 ; \quad x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
$$

Solution:

The set of feasible solutions of relaxation of the given ILPP is drawn on the right side of the figure 6.5. This relaxation has (as in the previous example) more then one optimal solutions - an infinite number of optimal solutions and the set of optimal solutions of relaxation is the line segment $\overline{B C}$. The set of feasible solutions of the given ILPP is drawn on the left side of the figure 6.5, But in this case the given ILPP has just one optimal solution $\boldsymbol{x}^{o p t}=(4,1)^{\top}$.

Figure 6.5: The graphical representation of the ILPP - example 6.5.

Example 6.6. Let we have ILPP:

$$
\begin{aligned}
-6 x_{1}+5 x_{2} & \rightarrow \max \\
14 x_{1}+7 x_{2} & \leq 49 \\
8 x_{1}-11 x_{2} & \leq 4 \\
6 x_{1}-5 x_{2} & \geq-3 \\
x_{1}, x_{2} & \geq 0 ; \quad x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
$$

Solution:

The set of feasible solutions of relaxation of the given ILPP is drawing on the right side of the figure 6.6. This relaxation has (as in the two previous examples) more than one optimal solution - the set of optimal solutions of relaxation is the line segment $\overline{F G}$. But we can see on the left side of the figure 6.6 that the feasible set of ILPP is empty and ILPP is infeasible.

Figure 6.6: The graphical representation of the ILPP - example 6.6.

In the two following examples we have an unbounded feasible sets of relaxations but feasible set of ILPP are of different types.

Example 6.7. Let we have ILPP:

$$
\begin{aligned}
2 x_{1}+x_{2} & \rightarrow \max \\
x_{1}-4 x_{2} & \leq-3 \\
-2 x_{1}+x_{2} & \leq-1 \\
-5 x_{1}+6 x_{2} & \geq-9 \\
x_{1}, x_{2} & \geq 0 ; \quad x_{1}, x_{2} \in \mathbb{Z} .
\end{aligned}
$$

Solution:

The relaxation of the given ILPP is feasible and unbounded - see figure 6.7 - left side. The ILPP is also feasible and unbounded - see figure 6.7 - right side.

Example 6.8. Let we have ILPP:

$$
\begin{aligned}
2 x_{1}+3 x_{2} & \rightarrow \max \\
3 x_{1}-3 x_{2} & \geq-5 \\
3 x_{1}-3 x_{2} & \leq-4 \\
x_{1}+x_{2} & \geq 3 \\
x_{1}, x_{2} & \geq 0 ; \quad x_{1}, x_{2} \in \mathbb{Z} .
\end{aligned}
$$

Solution:

The relaxation of the given ILPP is feasible and unbounded - see figure 6.8 - left side but the ILPP is infeasible - see figure 6.8 - right side.

Figure 6.7: The graphical representation of the ILPP - example 6.7.

Example 6.9. Let we have ILPP:

$$
\begin{aligned}
2 x_{1}+3 x_{2} & \rightarrow \min \\
4 x_{1}+5 x_{2} & \leq 16 \\
7 x_{1}+4 x_{2} & \geq 42 \\
-2 x_{1}+3 x_{2} & \leq-4 \\
x_{1}, x_{2} & \geq 0 ; \quad x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
$$

Solution:

Figure 6.8: The graphical representation of the ILPP - example 6.8.

As we can see in the figure 6.9 the relaxation of the given ILPP is infeasible. According to the Theoreme 6.1 the ILPP is infeasible too.

Observation:

We might have noticed in the previous examples that a feasible set of relaxation of a ILPP could be infeasible, feasible bounded and a feasible unbounded. A feasible bounded set could have one or more than one optimal solutions. A feasible set of ILPP could be infeasible, feasible bounded and feasible unbounded. A feasible bounded set could have one or more than one optimal solutions. The next table clearly shows, which options are possible

Figure 6.9: The graphical representation of the ILPP - example 6.9.
$(\sqrt{ })$ and/or are not possible (-) for the pair "relaxation of ILPP - ILPP".

Table 6.1: Information about a relaxation of ILPP and ILPP.

relaxation of ILPP	ILPP			
	1 optimum	more than 1 optimum	feasible unbounded	infeasible
1 optimum	\checkmark	\checkmark	-	\checkmark
more than 1 opt.	\checkmark	\checkmark	-	\checkmark
feasible unbounded	-	-	\checkmark	\checkmark
infeasible	-	-	-	\checkmark

6.3. Gomory's Fractional Algorithm

We can solve tasks of the integer linear programming problem with two variables graphically with some limitations. But what happens if ILPP has more than two decision variables? In the subsection 4.4 is an example 4.2 , which is solved by simplex method. The relaxation of the ILP has an integer solution. This solution was also solution of ILP. If the relaxation of ILP is not integer solution, we can solve it by method of the so-called cutting hyperplane, otherwise also called Gomory's fractional algorithm.

First, using the simplex method we solve the ILP relaxation. Gomory fractional algorithm adds to the problems of linear programming constrains

- Gomory cuts which narrow down the set of feasible solutions of some parts do not containing the points with integer values. For solving of the expanded task about such a cut is preferable to use the dual simplex method.

Let task of the integer linear programming problem is given in the standard form:

$$
\begin{aligned}
f(\boldsymbol{x}) & =\boldsymbol{c}^{\top} \cdot \boldsymbol{x} \rightarrow \min \\
\boldsymbol{A} \cdot \boldsymbol{x} & =\boldsymbol{b} \\
x_{i} & \geq 0 ; \quad x_{j} \in \mathbb{Z} ; \quad \text { for } j=1,2, \ldots, n, \\
\boldsymbol{A} & \in \mathbb{Z}^{m \times n} ; \quad \boldsymbol{c} \in \mathbb{Z}^{n} ; \quad \boldsymbol{b} \in \mathbb{Z}^{m} .
\end{aligned}
$$

Let us have the optimal table for a relaxation of ILP. The elements of the optimal table will be denoted $\gamma_{i j}$.

Corollary 6.1. After the addition of Gomory cut (6.2):

$$
\begin{equation*}
-\sum_{j \notin B}\left\{\gamma_{i j}\right\} \cdot x_{j}+g=-\left\{\gamma_{i 0}\right\} \tag{6.2}
\end{equation*}
$$

to the optimal table (LPP) is not excluded any integer feasible point, but exclude the currently optimal solution (LPP), where $\gamma_{i 0}$ is not an integer. The new table is basic, primary infeasible and optimal.

Theorem 6.5 (Finality Gomory algorithm). Gomory algorithm (a) chooses the first row with non-integer $y_{i 0}$, (b) use the lexicographic version of the dual

Go Back
algorithm. If the objective function (LPP) is bounded from above, then the algorithm finds after the final number of steps the integer solution (ILPP) or finds that (ILPP) is infeasible.

6.4. Solved Examples

Contents

$$
\begin{aligned}
0,22 x_{1}+0,56 x_{2} & \rightarrow \max \\
10 x_{1}+20 x_{2} & \leq 140 \\
0,55 x_{1}+0,74 x_{2} & \leq 6,6 \\
x_{1}, x_{2} & \geq 0 ; \quad x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
$$

We multiply the objective function and constraints by the appropriate number in order to have integer coefficients:

$$
\begin{aligned}
11 x_{1}+28 x_{2} & \rightarrow \max \\
x_{1}+2 x_{2} & \leq 14 \\
55 x_{1}+74 x_{2} & \leq 660 \\
x_{1}, x_{2} & \geq 0 ; \quad x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
$$

We obtain ILP. By omitting conditions $x_{1}, x_{2} \in \mathbb{Z}$, we have relaxation of the given ILP and we transform it into standard form:

$$
\begin{aligned}
-11 x_{1}-28 x_{2} & \rightarrow \min \\
x_{1}+2 x_{2}+s_{1} & =14 \\
55 x_{1}+74 x_{2}+s_{2} & =660 \\
x_{1}, x_{2}, s_{1}, s_{2} & \geq 0 .
\end{aligned}
$$

This relaxation is solved with using simplex method:

Table 6.2: Simplex method - relaxation of ILPP.

B	x_{0}	x_{1}	x_{2}	s_{1}	s_{2}
-	0	-11	-28	0	0
s_{1}	14	1	2	1	0
s_{2}	660	55	74	0	1

The table 6.2 is not optimal and we must use a pivot operation. The number 2 on the position $(1 ; 2)$ is the pivot:

Table 6.3: Simplex method - relaxation of ILPP.

B	x_{0}	x_{1}	x_{2}	s_{1}	s_{2}
-	196	3	0	14	0
x_{2}	7	$1 / 2$	1	$1 / 2$	0
s_{2}	142	18	0	-37	1

The optimal solution of the relaxation of the given ILP is $\boldsymbol{x}^{o p t}=(0,7)^{\top}$; $f^{\text {opt }}=-196:(-50)=3,92$. Because the solution $\boldsymbol{x}^{\text {opt }}=(0,7) \in \mathbb{Z}^{2}$ than this solution is solution of givet ILP too. We should order 7 pieces of Cabinet $S k 60$ and we obtain $3,92 \mathrm{~m}^{3}$ of storage volume.

Example 6.11. Carpentry manufactures three types of tables. They use three different kinds of wooden boards for their production. Consumption of these boards to produce one table of various kinds, stocks boards and the selling profit of one table are given in the following table:

tables \backslash boards	B_{1}	B_{2}	B_{3}	profit (€)			
T_{1}	2	4	0	8			
T_{2}	1	0	1	10			
T_{3}	1	2	1	12			
stocks	80	50	40				

The task is to schedule production plan so that the profit will be maximum.

Go Back

$$
8 x_{1}+10 x_{2}+12 x_{3} \rightarrow \max
$$

$$
2 x_{1}+x_{2}+x_{3}+s_{1}=80
$$

$$
4 x_{1}+2 x_{3}+s_{2}=50
$$

$$
x_{2}+x_{3}+s_{3}=40
$$

$$
x_{1}, x_{2}, x_{3}, s_{1}, s_{2}, s_{3} \geq 0 ; \quad x_{1}, x_{2}, x_{3} \in \mathbb{Z}
$$

We can fill the simplex table of the relaxation of the ILPP. See Table 6.4.

Table 6.4: Simplex method - relaxation of ILPP.

B	x_{0}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}
-	0	-4	-5	-6	0	0	0
s_{1}	80	2	1	1	1	0	0
s_{2}	50	4	0	2	0	1	0
s_{3}	40	0	1	1	0	0	1

The table is basis, primary feasible but it is not an optimal table. We

Table 6.5: Simplex method - relaxation of ILPP.

B	x_{0}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}
-	200	-4	0	-1	0	0	5
s_{1}	40	2	0	0	1	0	-1
s_{2}	50	4	0	2	0	1	0
x_{2}	40	0	1	1	0	0	1

We recalculate Table 6.5 again but the given pivot is $x_{23}=2$ and we get a new simplex table. See Table 6.6.

Table 6.6: Simplex method - relaxation of ILPP.

B	x_{0}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}
-	225	-2	0	0	0	$1 / 2$	5
s_{1}	40	2	0	0	1	0	-1
x_{3}	25	2	0	1	0	$1 / 2$	0
x_{2}	15	-2	1	0	0	$-1 / 2$	1

Since neither this table is optimal, we use pivot operation again and the pivot is $x_{21}=2$.

This table 6.7 is optimal and the solution of the relaxation is $x_{r}^{\text {opt }}=$ $(25 / 2,40,0)^{\top}$. As the solution of relaxation is not an integer, it is not a solution ILPP. The value of variable x_{1} is not an integer we add Gomory cut according row of the simplex table which belongs to x_{1} :
$\{1\} \cdot x_{1}+\{0\} \cdot x_{2}+\{1 / 2\} \cdot x_{3}+\{0\} \cdot s_{1}+\{1 / 4\} \cdot s_{2}+\{0\} \cdot s_{3}-g=\{25 / 2\}$.
So we have:

$$
-1 / 2 \cdot x_{3}-1 / 4 \cdot s_{2}+g=-1 / 2
$$

We add one column and one row for g to table 6.8 - for Gomory cut:

Table 6.7: Simplex method - relaxation of ILPP.

B	x_{0}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}
-	250	0	0	1	0	1	5
s_{1}	15	0	0	-1	1	$-1 / 2$	-1
x_{1}	$25 / 2$	1	0	$1 / 2$	0	$1 / 4$	0
x_{2}	40	0	1	1	0	0	1

Table 6.8: Simplex method - Gomory cut - step 1.

B	x_{0}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	g
-	250	0	0	1	0	1	5	0
s_{1}	15	0	0	-1	1	$-1 / 2$	-1	0
x_{1}	$25 / 2$	1	0	$1 / 2$	0	$1 / 4$	0	0
x_{2}	40	0	1	1	0	0	1	0
g	$-1 / 2$	0	0	$-1 / 2$	0	$-1 / 4$	0	1

The obtained simplex table is primary infeasible, but dual feasible and basis. We can use dual simplex algorithm and pivot is $x_{43}=-1 / 2$.

Table 6.9: Simplex method - Gomory cut - step 2.

B	x_{0}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	g
-	249	0	0	0	0	$1 / 2$	5	2
s_{1}	16	0	0	0	1	0	-1	-2
x_{1}	12	1	0	0	0	0	0	1
x_{2}	39	0	1	0	0	$-1 / 2$	1	2
x_{3}	1	0	0	1	0	$1 / 2$	0	-2

One can see that table 6.9 is optimal and solution is integer. So the solution of the ILPP is $\boldsymbol{x}^{\text {opt }}=(12,39,1)^{\top}$ a $f^{o p t}=249$. Carpentry will have maximal profit if it manufactures 12 tables $T_{1}, 39$ tables T_{2} and 1 table T_{3}. The profil will be $249 €$.

6.5. Exercises

6.1. Find solutions of following integer linear programming problems:
a)

Contents

$$
\begin{aligned}
2 x_{1}+3 x_{2} & \rightarrow \max \\
3 x_{1}+2 x_{2} & \leq 400 \\
1,5 x_{1}+x_{2} & \leq 150 \\
3 x_{1}+5 x_{2} & \leq 300 \\
x_{1,2} & \geq 0 \\
x_{1,2} & \in \mathbb{Z}
\end{aligned}
$$

b)

$$
\begin{aligned}
80 x_{1}+114 y_{1} & \rightarrow \max \\
x_{1}-2 x_{2} & \geq 0 \\
0,5 x_{1}+x_{2} & \leq 19 \\
x_{1}+2 x_{2} & \leq 40 \\
2 x_{1}+5 x_{2} & \leq 15 \\
x_{1,2} & \geq 0 \\
x_{1,2} & \in \mathbb{Z}
\end{aligned}
$$

c)

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & \rightarrow \max \\
-x_{2}+2 x_{3} & \leq 3 \\
3 x_{1}-4 x_{2}-x_{3} & \leq 5 \\
x_{1,2,3} & \geq 0 \\
x_{1,2,3} & \in \mathbb{Z}
\end{aligned}
$$

d)

$$
\begin{aligned}
3 x_{1}+2 x_{2}+4 x_{3} & \rightarrow \max \\
x_{1}+x_{2}+2 x_{3} & \leq 4 \\
2 x_{1}+x_{3} & \leq 5 \\
2 x_{1}+x_{2}+3 x_{3} & \leq 7 \\
x_{1,2,3} & \geq 0 \\
x_{1,2,3} & \in \mathbb{Z}
\end{aligned}
$$

6.2. Factory produces laptops and computers. It uses $1000 \mathrm{~kg} \mathrm{Cu}, 7000$ $\mathrm{kg} \mathrm{Al}, 1000 \mathrm{~kg}$ steel for its production of 1000 pieces of computers. It is necessary to expend $3000 \mathrm{~kg} \mathrm{Cu}, 1000 \mathrm{~kg} \mathrm{Al}, 1000 \mathrm{~kg} \mathrm{~Pb}$ and 1000 kg of steel in order to produce 1000 pieces of laptops. The factory has available $6000 \mathrm{~kg} \mathrm{Cu}, 35000 \mathrm{~kg} \mathrm{Al}, 3000 \mathrm{~kg} \mathrm{~Pb}$ and 7000 kg steel. Maximize sales
turnover when the computer price is $700 €$ and the laptop price is $900 €$ per one piece.
6.3. We have 30 bar pieces each with the length of 10 meters. We need to cut 15 bar pieces with the length of 5 meters, 36 bar pieces with the length of 3 meters and 20 bar pieces with the length of 4 meters. Suggest an optimal solution by minimizing the scrap.

Contents

6.6. Solutions

6.1 a) $\boldsymbol{x}^{\text {opt }}=(40 ; 26)^{\top}, f^{o p t}=158$
b) $\boldsymbol{x}^{o p t}=(2 ; 1)^{\top}, f^{o p t}=274$
c) The relaxation of ILPP is feasible unbounded, so ILPP is feasible unbounded or infeasible.
d) $\boldsymbol{x}^{o p t}=(2 ; 0 ; 1)^{\top}, f^{o p t}=10$
6.2 The factory will gain maximum sales turnover if it produces only 5000 pieces of computers. The sales turnover will be $3500000 €$.
6.3 Optimal cutting of the bars: to cut 8 bars into $5+5$ meters and 20 bars into $4+3+3$ meters. The scrap will be zero.

Index

Algorithm, 114
Gomory's Fractional, 173
Artificial LPP, 119
Artificial Variables, 119
Auxiliary Tasks, 119
Base
Basic Feasible Solution, 59
Basic, 58
Basic Feasible Solution, 58
Basic Solution, 59
Basis, 58
Boundary Point, 51
Canonical Form, 54
Change in objective function value,

Complementary Slackness Theorem, 99
Conrner Point, 51
Constraints, 18, 19
Convex Analysis
Convex Combination, 51
Convex Hull, 51
Convex Set, 49
Corner Point, 51
Convex Combination, 51
Convex Hull, 51
Convex Set, 49
Polygon, 53
Polyhedral, 53
Criterion of Unbondedness, 117
Cutting Hyperplane, 173

Full Screen

Close

Degenerated Solution, 59
Dual Linear Programming Problem, 95
Dual Problem, 95
Dual Simplex Method, 146
Algorithm, 146
Procedure Dual Simplex, 148
Extreme Point, 51
G. B. Dantzig, 17

Gomory Cut, 173
Gomory's Fractional Algorithm, 173
Integer Linear Programing Problem,
157
Cutting Hyperplane, 173
Formulation of the Problem, 157
Gomory Cuts, 173
Gomory's Fractional Algorithm, 173
Graphical Solution of ILP Problem, 160
Relaxation of ILP Problem, 158
Task of ILP Problem, 157

Linear Function, 22
Additivity, 22
Proportionality, 22
Linear Programing Problem
Bounded, 26
Contents
Coefficients of Constraints, 24
Coefficients of Right Sides, 24
Feasible, 26
General Form, 25
Infeasible, 26
Matrix Notation, 25
Objective Function Coefficients, 24
Set of Feasible Solutions, 26
Unbounded, 26
Variables, 24
Vector Notation, 25
Linear Programming Problem, 17, 19, 23
Dual LPP, 95
Dual Problem, 95
Original LPP, 95
Primal Problem, 95
Linearly Dependent, 58

Full Screen

Close

Linearly Independent, 58
Linearly Independent Columns, 58
Linearly Independent Rows, 58
LPP
Basic Feasible Solution, 58
Basic Solution, 59
Canonical Form, 54
Slack Variables, 57
Standard Form, 54
Main Theorem of LPP, 54
Mathematical Model, 18
Mathematical Programming Problem, 17, 19
Methods of Mathematical Programming, 17

Objectives, 18, 19
Optimality Criterion, 117
Original Linear Programming Problem, 95

Pivot, 115
Pivoting, 115

Planning Problem, 17
Primal Problem, 95
Primal-Dual Pair, 96
Problem
Activity Analysis Problem, 27
Assignment Problem, 34
Cutting Problem, 31
Diet Problem, 29
Transportation Problem, 32
Procedure Dual Simplex, 148
Procedure Simplex, 121
Contents

Relaxation, 158
Relaxation of ILPP, 158
Scheduling Problem, 17
Simplex Algorithm
Pivot, 115
Pivoting, 115
Full Screen
Simplex Method, 17, 114, 116, 121
Algorithm, 114
Artificial LPP, 119
Artificial Variables, 119
Auxiliary Tasks, 119

Change in objective function value, Variables

117

Criterion of Unbondedness, 117
Dual, 146
Dual Algorithm of Simplex Method, 147
Optimality Criterion, 117
Pivot, 115
Artificial, 119
Auxiliary, 119
Title Page
Slack, 57
Weak Duality Theorem, 98
Contents

Pivoting, 115
Procedure Simplex, 121
Table, 116
Two-Phase Algorithm, 118
Simplex Table, 116
Slack Variables, 57
Solution, 26
Basic, 59
Basic Feasible, 59
Degenerated, 59
Feasible, 26
Optimal, 26
Standard Form, 54
Strong Duality Theorem, 99
Two-Phase Algorithm, 118

Lexicon - Vocabulary

English - Slovak

- Activity Analysis Problem
- úloha o plánovaní výroby
- Additivity
- Algorithm
- Artificial LPP
- Artificial Task
- Artificial Variables
- Assignment Problem
- Auxiliary Tasks
- aditivita
- algoritmus
- pomocná úloha LP

Full Screen

- pomocná úloha
- pomocné premenné
- priradovací problém
- pomocná úloha LP

B

- Base of Vector Space
- Base
- Basic
- Basic Solution
- Basis
- Basic Feasible Solution
- Bounded

C

- Canonical Form
- Change in objective function value
- Coefficients of Constraints
- Coefficients of Right Sides
- Complementary Slackness Theorem
- Constraints
- Convex Analysis
- Convex Combination
- Convex Hull
- Convex Set
- Corner Point
- Criterion of Unbondedness
- Cutting Problem
- báza vektorového priestoru
- báza
- bázický
- bázické riešenie
- báza
- bázické prípustné riešenie
- ohraničený
- kanonický tvar (úlohy LP)
- zmena hodnoty účelovej funkcie
- koeficienty ohraničení
- koeficienty pravých strán
- veta o komplementarite
- obmedzenia
- konvexná analýza
- konvexná kombinácia
- konvexný obal
- konvexná množina
- krajný bod

Close

- kritérium neohraničenosti (v SM)
- rezný plán

D

- Decreasing Function
- Degenerated Solution
- Diet Problem
- Dual LPP
- Dual Problem
- Dual Simplex Method

E

- Element of Matrix

F

- Feasible
- Feasible Solution
- Feasible Vector
- Formulation of the Problem

G

- Gaussian form of SLE
- General Form
- Gomory's Fractional Algorithm
- klesajúca funkcia
- degenerované riešenie
- úloha o diéte (zmiešavacia úloha)
- duálna úloha LP
- duálny problém
duálna simplexová metóda
- prvok matice
- prípustný
- prípustné riešenie
- prípustný vektor
- formulácia problému
- Gaussov tvar SLR
- všeobecný tvar
- Gomoryho zlomkový algoritmus

Contents

Go Back

- Graphical Solution of ILP Problem

H

- Half-closed Interval
- Half-plane

I

- Increasing Function
- Identity Submatrix
- Infeasible
- Integer
- Integer
- Integer Linear Programing Problem

J

- grafické riešenie úlohy CLP

Title Page

- polo-uzavretý interval
- polrovina
- rastúca funkcia
- jednotková podmatica
- neprípustný
- celé číslo
- celočíselný
- úloha celočíselného programovania
- Linear Function
- Linear Programming Problem
- Linearly Dependent
- Linearly Independent
- Linearly Independent Columns
- Linearly Independent Rows
- Local Maximum
- Local Minimum

M

- Main Theorem of LPP
- Mathematical Model
- Methods of Mathematical Programming metódy matematického programovania
- Mathematical Programming Problem
- Maximum of Function
- Minimum of Function

N

- Natural Number

O

- Objectives
- hlavná veta LP
- úloha matematického programovania
- maximum funkcie
- minimum funkcie

Go Back

- lineárna funkcia
- úloha lineárneho programovania
- lineárne závislý
- lineárne nezávislý
- lineárne nezávislé stĺpce

Contents

- lineárne nezávislé riadky
- lokálne maximum
- lokálne minimum
- prirodzené číslo
- ciele
- Objective Function
- Objective Function Coefficients
- Objective Function Value
- Optimal Solution
- Optimality Criterion
- Original LPP

P

- Pivot
- Pivoting
- Pivoting Simplex Table
- Plane
- Problem
- Proportionality
- Polygon
- Polyhedron
- Primal Problem
- Primal-Dual Pair
- účelová funkcia
- koeficienty účelovej funkcie
- hodnota účelovej funkcie
- optimálne riešenie
- kritérium optimality (v SM)
- pôvodná úloha LP
- pivot
- pivotovanie
- pivotovanie simplexovej tabulky
- rovina
- problém
- proporcionalita
- mnohouholník
- mnohosten

Go Back

- primárny problém
- primárno-duálna dvojica

R

- Relaxation
- Relaxation of ILP Problem
- Relative Price

S

- Segment Line
- Schedule Production Plan
- Set of Feasible Solutions
- Simplex Method
- Simplex Table
- Slack Variables
- Solution
- Standard Form
- Strong Duality Theorem
- Submatrix
- Task
- Transportation Problem
- Two-Phase Algorithm of SM
- relaxácia
- relaxácia úlohy CLP
- relatívna cena
- úsečka
- výrobný program
- množina prípustných riešení
- simplexová metóda
- simplexová tabulka
- doplnkové premenné
- riešenie
- štandardný tvar (úlohy LP)
- silná veta o dualite
- podmatica
- úloha
- dopravná úloha
- dvojfázový algoritmus pre SM

U

- Unbounded
- Unbounded LPP

V

- Variables

W

- Weak Duality Theorem

Z

- neohraničený
- neohraničená úloha LP

Title Page

Contents

- premenné
- slabá veta o dualite

Bibliography

[1] Š. Berežný - Z. Hajduová - D. Kravecová: Úvod do lineárne programovanie, Humanitas University - Sosnowiec, Poland (2013), ISBN: 978-83-61991-74-8
[2] Š. Berežný - D. Kravecová: Lineárne programovanie, FEI TU Košice, Košice (2012), ISBN: 978-80-553-0910-1
[3] I. Brezina - Z. Ivaničová - J. Pekár, Operačná analýza, Iura Edition, Bratislava (1999), 243 s, ISBN 978-80-8078-176-7
[4] J. Dudorkin, Operační výskum, Fakulta elektrotechnická - Vydavatelství ČVUT, Praha (2002), 296 s, Štvrté vydanie, ISBN 80-01-02469-5
[5] K. Cechlárová - G. Semanišin, Lineárna optimalizácia, UPJŠ, Košice (1999), 98 s, ISBN 80-7079-385-4
[6] J. Jablonský, Operační výskum - kvantitativní modely pro ekonomické rozhodování, Professional publishing, Praha (2007), 323 s, Tretie vydanie, ISBN 978-80-86946-44-3
[7] S. I. Gass, Lineárne programovanie, Alfa, Bratislava (1972), 400 s
[8] J. Plesník - J. Dupačová - M. Vlach, Lineárne programovanie, Alfa, Bratislava (1990), 320 s, ISBN 80-05-00679-9
[9] D. Rosinová - M. Dúbravská, Optimalizácia, Slovenská technická univerzita, Bratislava (2007), 195 s, ISBN 978-80-227-2795-2
[10] J. Strádalová, Užití některých matematických metod v ekonomické praxi, Nakladatelství Univerzity Karlovy - Karolinum, Praha (1999), 261 s, ISBN 80-7184-800-X Vydavatelství ČVUT, Praha (2002), 242 s, Prvé vydanie, ISBN 80-01-02083-5

Názov: MATHEMATICS 3

ISBN: $\quad 978-80-553-1791-5$

