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Preface

This university textbook is intended for the use by teaching the subject Applied Infor-
matics in the first year of engineering study of the Faculty of Electrical Engineering and
Informatics, Technical University.

The textbook follows the content of mathematical subjects in bachelor degree grade.
The content of the textbook is intended by the curriculum of the subject, that have been
drafted according to the requirements specialized departments. The aim is to give the
basic methods necessary for further study of technical subjects.

For more illustrative explanation of each method are solved simple examples. In ad-
dition, at the end of each chapter are given tasks for individual study. A suitable com-
plement to practice materials are also other materials available on the website of De-
partment of Mathematics and Theoretical Informatics Faculty of Electrical Engineering
and Informatics Technical University in Košice http://www.tuke.sk/fei-km/ in the part
Predmety/Výučba.

In this way we want to thank the reviewers RNDr. Kristína Budajová, PhD. and
RNDr. Ján Buša, PhD. for the careful reading of the passages and for valuable comments.
that contributed to the its improvement.

This textbook is available on CD and on the web site DMTI FEEI TUKE (KMTI FEI
TU) and Moodle system, which is managed by the FEEI TUKE.

Košice, 31st of April 2015 Authors
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Chapter 1

Introduction to Probability Theory

1.1 Permutations, Variations, and Combinations
Combinatorics has many applications within computer science for solving complex prob-
lems. However, it is under-represented in literature since there is little application of
combinatorics in business applications. Fortunately, the science behind it has been studied
by mathematicians for centuries, and is well understood and well documented. However,
mathematicians are focused on in how many elements will exist within a combinatorics
problem, and have little interest in actually going through the work of creating those lists.
There are two common combinatorial concepts that are taught in every probability course.
These are permutations and combinations. There is a lesser known collection known as a
variation, which adapts features from both permutations and combinations. In addition,
there are variants of each of these three which involve introducing repetition to the input
or the output. So, the complete list of combinatorial collections is:

• permutations,
• permutations with repetitions,
• combinations,
• combinations with repetitions,
• variations,
• variations with repetitions.

Permutations deal with the ordering of a set of items, for example, in how many ways a
deck of 52 cards can be shuffled. Combinations deal subsets of a set of items, for example,
in how many ways 5 poker card hands can be dealt from a deck of 52 cards. In both cases,
each card in the deck or in the hand is unique, so repetition is not a factor. However,
problems do arise where repetition does occur in the input and/or output. For these cases,
the repetition versions allow us more options in constructing our output sets. Variations are
used when not only the subset provided by combinations is relevant but also the ordering
within that subset. Each of these is covered below.
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CHAPTER 1. INTRODUCTION TO PROBABILITY THEORY 8

In the following, we shall need the factorial function defined as follows

0! = 1, (n+ 1)! = (n+ 1)n! (1.1)

and the binomial coefficients, defined by the formula(
n

k

)
= n!

(n− k)!k! , (n, k are nonnegative integers, n ≥ k) (1.2)

From (1.1) and (1.2), we obtain(
n

0

)
= 1, in particular,

(
0
0

)
= 1.

Permutations

Permutations are all possible orderings of a given input set. Each ordering of the input is
called a permutation. When each item in the input set is different, there is only one way to
generate the permutations. However, when two or more items in the set are the same, two
different permutation sets are possible. These are called Permutations and Permutations
with Repetition.

Theorem 1.1 (Permutations). The number of permutations of n different items taken
all at a time is

P (n) = n! = 1 · 2 · . . . · n. (1.3)
Permutations with Repetition

Permutations with Repetition sets give allowance for repetitive items in the input set that
reduce the numbers of orderings. The number of Permutations with Repetition is not as
large, being reduced by the number and count of repetitive items in the input set.

Theorem 1.2 (Permutations with repetition). If n given items can be divided into
c classes of alike items differing from class to class, then the number of permutations of
these items taken all at a time is

P ′n1,n2,...,nc(n) = n!
n1!n2! . . . nc!

(n1 + n2 + · · ·+ nc = n) (1.4)

where nj is the number of items in the jth class.

Combinations

Combinations are subsets of a given size taken from a given input set. The size of the
set is known as the Upper Index (n) and the size of the subset is known as the Lower
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Index (k). Unlike permutations, combinations do not have any order in the output set.
Like permutations, they do have two generation methods based on the repeating of output
items. These are called Combinations and Combinations with Repetition.

Combinations can be thought of as throwing a set of n dominos into a hat and then
retrieving k of them. Each domino can only be chosen once, and the order that they were
fished out of the hat is irrelevant.

Theorem 1.3 (Combinations). The number of different combinations of n different
items, k at time is

C(n, k) =
(
n

k

)
. (1.5)

Combinations with Repetitions

Combinations with Repetition are determined by looking at a set of items, and selecting
a subset while allowing repetition. For example, choose a tile from the scrabble bag above,
write down the letter, and return the letter to the bag.

Theorem 1.4 (Combinations with repetitions). The number of different combinations
of n different items, k at time with repetitions is

C ′(n, k) =
(
n+ k − 1

k

)
. (1.6)

Variations

Variations combine features of combinations and permutations, they are the set of all
ordered combinations of items to make up a subset. Like combinations, the size of the set
is known as the Upper Index (n) and the size of the subset is known as the Lower Index
(k). The generation of variations can be based on the repeating of output items. These
are called Variations and Variations with Repetition.

Variations are permutations of combinations. That is, a variation of a set of n items
choose k, is the ordered subset of size k.

Theorem 1.5 (Variations). The number of different variations of n different items, taken
k at time is

V (n, k) = n!
(n− k)! . (1.7)

Theorem 1.6 (Variation with repetitions). The number of different variations of n
different items, taken k at time with repetitions is

V ′(n, k) = nk. (1.8)
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1.2 Classical Definition of Probability
The probability theory has the purpose of providing mathematical models of situations
affected or governed by “chance effect” for instance, in weather forecasting, life insurance,
quality of technical products, traffic problems, and, of course, games of chance with cards
or dice.

We begin with defining some standard terms. An experiment is a process of measure-
ment or observation, in a laboratory, in a factory, on the street, in nature, or wherever: so
“experiment ” is used in rather general case. Our interest is in experiments that involve
randomness, chance effects, so that we cannot predict a result exactly. A trial is a single
performance of an experiment. Its result is called a random event. The space of elementary
events γ of an experiment is the set of all possible outcomes. For example, rolling a die,
γ = {1, 2, 3, 4, 5, 6}, coin tossing, γ = {heads, tails}, lotto draw γ = {1, 2, . . . , 40}.

The subsets of γ are called events. In rolling die, events are for example A = {1, 3, 5}
(“odd number”), B = {2, 4, 6} (“even number”), C = {5, 6} (“number greater than 4”),
etc. Event that after the experiment will never be is called an impossible event, we write
∅. Event that after the experiment will always occur is called a certain event, we write I.

Basic knowledge of events

Definition 1.1.

1. Events A and B are equivalent, if event A occurs if and only if event B occurs, we
write A = B.

2. The complement of A is an event, which occurs if and only if event A does not occur,
we write A.

3. The union of events A and B is an event, which occurs if occurs at least one of events
A and B, we write A ∪B.

4. The intersection of events A and B is an event, which occurs if occur both of events
A and B, we write A ∩B.

5. The difference of events A and B is an event, which lies in the fact that an event A
occurs and at the same time an event B does not occur.

Throwing a dice once, let event A be that the number on the face is odd and event B be
that the number on the face is greater than 4. We denote events as the sets. We have
A = {1, 3, 5} and B = {5, 6}. Then A = {2, 4, 6}, B = {1, 2, 3, 4}, A ∩ B = {5},
A ∪B = {1, 3, 5, 6}, A−B = {1, 3}, B − A = {6}.

Definition 1.2.

1. Events A and B are called disjoint if they can not occur at the same time, i.e.,
A ∩B = ∅.
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2. Events H1, H2, . . . , Hn are disjoint, if H1∩Hj = ∅ for each i 6= j, i, j ∈ {1, 2, . . . , n}.

Definition 1.3. The system of disjoint events H1, H2, . . . , Hn is called complete, if its
union is a certain event. The complete system of disjoint events is called the system of
hypothesis.

When throwing dice, let H1 denotes the event that the face shows an even number and
H2 denotes the event that the face shows an odd number. The events H1, H2 represent
a complete system of disjoint events (hypothesis).

Definition 1.4.

1. An event E is called simple, if there does not exist events A1, A2 different from E
such that E = A1 ∪ A2.

2. Each event, which is not elementary, is called a composite event.

3. The set of all elementary events which can occur as the output of a random experi-
ment is called a space of elementary events, i. e. γ = {E1, E2, . . . , En, . . . }.

When throwing dice, γ = {E1, E2, . . . , E6}, where Ek denotes the event that the face
shows the number k. An event A can be equivalent to some of elementary events but also
can include several elementary events. For example, showing an odd number on the face
consists of three elementary events E1, E2, E3.

The operations with random events are reduced to the operations with sets and they
follow the same rules. The empty set corresponds to the impossible event and the space of
elementary events corresponds to the certain event.

Definition 1.5. Let γ = {E1, E2, . . . , En, . . . } be a space of elementary events. A nonempty
system τ of subsets of γ is called a sample space, if

1. ∅ ∈ τ ;

2. if A ,B ∈ τ then A ∩B ∈ τ , A ∪B ∈ τ , A ∈ τ ;

3. if A1, A2, . . . , An ∈ τ then
∞
∩
i=1

Ai ∈ τ and
∞
∩
i=1

Ai ∈ τ .

Elements of a sample space are events.

Basic relations for operations with events:

1. A ⊂ A, A ∪ A = A, A ∩ A = A;

2. A ∪ ∅ = A, A ∩ ∅ = ∅.

3. A ∪ I = I, A ∩ I = A.

4. A ∪ A = I, A ∩ A = ∅.
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5. A ∪B = B ∪ A, A ∩B = B ∩ A.

6. A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C.

7. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

8. A ∪B = A ∩B, A ∩B = A ∪B. (de Morgan rules)

Definition 1.6 (Classical definition of probability). Let γ = {E1, E2, . . . , En} be a
space of elementary events. Let each elementary event be “equally possible”. For each even
A ∈ τ we define its probability as follows:

P (A) = m

n
, (1.9)

where m is the number of elementary events from which A consists, i. e. A = Ei1 ∪ Ei2 ∪
· · · ∪ Eim .
We can equality (1.9) interpret as follows:

P (A) = the number of favorable outcomes of event A
the number of possible outcomes of event A .

Theorem 1.7 (Basic properties of classical probability).

1. For each A ∈ τ is 0 ≤ P (A) ≤ 1.

2. P (∅) = 0, P (I) = 1.

3. P (A) = 1− P (A).

4. If A ∩B = ∅ then P (A ∪B) = P (A) + P (B).
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1.3 Solved Examples
Example 1.1. There is a basket of fruits containing an apple, a banana and an orange
and there are five girls who want each to eat one fruit. In how many ways are there to give
three of the five girls one fruit each and leave two of them without a fruit to eat?
Solution:
Giving the 3 fruits to 3 of the 5 girls is a sequential problem. We first give the apple to
one of the girls. There are 5 possible ways to do this. Then we give the banana to one
of the remaining girls. There are 4 possible ways to do this, because one girl has already
been given a fruit. Finally, we give the orange to one of the remaining girls. There are 3
possible ways to do this, because two girls have already been given a fruit. Hence there
are 5 · 4 · 3 = 60 ways to give them fruits.

In fact, the number of ways to assign the three fruits is equal to the number of 3-
variations of 5 objects (without repetition). If we denote it by V (5, 3), then we get

V (5, 3) = 5!
(5− 3)! = 60. √

Example 1.2. In a race with 30 runners 8 trophies will be given to the top 8 runners (the
trophies are distinct: first place, second place, etc), in how many ways the trophies can be
given away?
Solution:
This is a permutation problem since the trophies are distinct. Think of the trophies as
being 8 positions. The number of ways to arrange 30 items taken 8 at a time is

V (30, 8) = 30!
(30− 8)! = 30 · 29 · 28 · 27 · 26 · 25 · 24 · 23.

You can also think of drawing 8 blanks representing 8 trophies and multiply the number
of possibilities for each blank: 30 · 29 · 28 · . . . · 24 · 23.

√

Example 1.3. How does change the solution of the problem in Example (3.1) if a certain
person, Roberta, must be one of the top 3 winners?
Solution:
There are 3 ways to put Roberta in one of the top 3 positions. The number of ways to
give other 7 trophies equals V (29, 7). So the answer is:

3 · V (29, 7) = 3 · (29 · 28 · 27 · . . . · 23). √

Example 1.4. In how many ways can you arrange 16 people into 4 rows of 4 desks each?
Solution:
In this problem the desks and rows are considered distinct.It doesn’t matter how the
desks are arranged. You could number them 1 through 16 and the problem becomes a
elementarypermutation of 16 items. So the number of ways is P (16) = 16! .

√
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Example 1.5. In how many ways can you choose 4 groups of 4 people from 16 people,
assuming the groups are distinct?
Solution:
Choosing the members of the first group we choose 4 people from 16, which are combina-
tions C(16, 4). The members of the second and the third group are chosen from 12 and 8
people, respectively.
The number of ways, we can choose 4 groups of 4 people from 16 people is(

16
4

)
·
(

12
4

)
·
(

8
4

)
= 63063000. √

Example 1.6. In how many ways can you pair up 8 boys and 8 girls?
Solution:
If sounds like there are 2 sets of 8 items to consider permuting, but in reality we are only
permuting one set of 8 items. Think of the boys as in a fixed order: boy 1, boy 2, . . . ,
boy 8. Each arrangement of girls corresponds to one pairing with the boys: girl 1 in the
arrangement with boy 1, girl 2 in the arrangement with boy 2, etc. The girls can be arranged
in P (8) = 8! ways.

√

Example 1.7. Ternary strings have symbols 0, 1, and 2. In how many ternary strings of
length 4 have exactly one 1?
Solution:
If there is exactly one 1, then there are 4 positions the 1. The number of ways to fill the
other 3 blanks with a 0 or a 2 equals the number of different variations of 2 elements taken
3 at time, so the total number is

4 · V ′(2, 3) = 4 · 23 = 32. √

Example 1.8. In how many ternary strings of length 4 do not contain symbol 1?
Solution:
If there are no ones then we can only use symbols 0 and 2 so there are 2 possibilities for
each of 4 positions so the answer is 2 · 2 · 2 · 2 = 24 = 16.

√

Example 1.9. In how many ways can you arrange a) 5 people b) 4 people on a ferris
wheel with 6 seats, if the seats are indistinguishable?
Solution:
a) There are (n−1)! circular permutations of n items, since the permutation a1, a2, . . . , an.
is the same as a2, . . . , an, a1,etc.. In our example, we have a circular permutation of essen-
tially 6 items - 5 people and one empty seat. So the number of ways is 5!.
If there were 4 people and 2 empty seats, the answer would not be 5! since the 4 people are
different, but the 2 empty seats are indistinguishable. For example, let a, b, c, d be the 4
people and e1, e2 be the empty seats. There is no real difference between a, b, c, d, e1, e2
and a, b, c, d, e2, e1, but if you gave the answer (6− 1)! = 5! you would count these iden-
tical permutations twice. The answer for this situation would be 5!/2! = 5 · 4 · 3 = 60.√
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Example 1.10. In how many permutations are there of the word “repetition”?
Solution:
Since the letters e, t, i occur twice, we have permutations with repetition. The number is

P2,2,2(10) = 10!
2!2!2! .

√

Example 1.11. A jar contains 3 red marbles, 7 green marbles and 10 white marbles. If
a marble is drawn from the jar at random, what is the probability that this marble is
white?
Solution:
We have in total n = 3 + 7 + 10 = 20 and m = 10. The probability that the drawn marble
will be white is

P (A) = m

n
= 10

20 = 1
2 . √

Example 1.12. The blood groups of 200 people is distributed as follows: 50 have type A
blood, 65 have B blood type, 70 have 0 blood type and 15 have AB blood type. If a person
from this group is selected at random, what is the probability that this person has 0 blood
type?
Solution:
We have n = 200 and m = 70. The probability that the selected person has 0 blood type
is

P (A) = 70
200 = 0, 35.

√

Example 1.13. Suppose we draw a card from a deck of poker cards. What is the proba-
bility that we draw a spade?
Solution:
There are n = 52 possible outcomes , and m = 13 spades in the deck represent the number
of favorable outcomes. The probability of drawing a spade is P (A) = 13/52 = 1/4.

√

Example 1.14. Suppose a coin is flipped 3 times. What is the probability of getting two
tails and one head? Note that each flipping of coin has two possible outcomes H (heads)
and T (Tails).
Solution:
For this experiment, the space of elementary events consists of 8 events:

γ = {TTT, TTH, THT, THH,HTT,HTH,HHT,HHH}

Each event is equally likely to occur. The event A “getting two tails and one head” consists
of the following elementary events: A = {TTH, THT,HTT}.
Since m = 3 and n = 8, the probability of event A is

P (A) = 3
8 .

√
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Example 1.15. A die is rolled, find the probability that an even number is obtained.
Solution:
There are six elementary events, i.e. n = 6. Let A be the event “an even number is
obtained”, we have A = {2, 4, 6}. So m = 3 and the probability that an even number is
obtained is P (A) = m/n = 3/6 = 1/2.

√

Example 1.16. Two coins are tossed. Find the probability that two heads are obtained.
Solution:
The space of elementary events is given by γ = (H,T ), (H,H), (T,H), (T, T ). Let A be
the event “two heads are obtained”, then A = {(H,H)}. Using the formula of the classical
probability we get

P (A) = 1
4 .

√

Example 1.17. Two dice are rolled, find the probability that the sum of obtained numbers
is
a) equal to 1,
b) equal to 4,
c) less than 13.

Solution:
The space of elementary events consists of all ordered pairs of numbers 1, 2, . . . , 6, so there
are 36 elementary events.

a) Let A be the event “sum equal to 1”. There are no outcomes which correspond to a sum
equal to 1, hence P (A) = 0. Event A is an impossible event.
b) Let B be the event “sum equals 4”. Three possible outcomes give a sum equal to 4:
A = {(1, 3), (2, 2), (3, 1)}. We have m = 3, n = 36. Hence, P (B) = 3

36 = 1
12 .

c) Let C be the event “sum is less than 13”. All possible outcomes are together possible,
A = γ. Hence, P (C) = 1. Event C is a certain event.

√

Example 1.18. A die is rolled and a coin is tossed, find the probability that the die shows
an odd number and the coin shows a head.
Solution:
The space of elementary events of the experiment is as follows

γ = {(1, H), (2, H), (3, H), (4, H), (5, H), (6, H)(1, T ), (2, T ), (3, T ), (4, T ), (5, T ), (6, T )}.

Let A be the event “the die shows an odd number and the coin shows a head”. Event A
may be described as A = {(1, H), (3, H), (5, H)}. The probability P (A) is given by

P (A) = 3
12 = 1

4 .
√
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1.4 Unsolved Tasks
1.1. There are 5 seats around a table and 5 people to be seated at the table. In in how
many ways can they seat themselves?

1.2. Bob, John, Luke, and Tim play a tennis tournament. The rules of the tournament
are such that at the end of the tournament a ranking will be made and there will be no
ties. In how many different rankings can be there?

1.3. A byte is a number consisting of 8 digits that can be equal either to 0 or to 1. In how
many different bytes are there?

1.4. An hexadecimal number is a number whose digits can take sixteen different values:
either one of the ten numbers from 0 to 9, or one of the six letters from A to F. In how
many different 8-digit hexadecimal numbers are there, if an hexadecimal number is allowed
to begin with any number of zeros?

1.5. Three cards are drawn from a standard deck of 52 cards. In how many different 3-card
hands can possibly be drawn?

1.6. John has got 1 dollar, with which he can buy green, red, and yellow candies. Each
candy costs 50 cents. John will spend all the money he has on candies. In how many
different combinations of green, red, and yellow candies can he buy?

1.7. The board of directors of a corporation comprises 10 members. An executive board,
formed by 4 directors, needs to be elected. In how many possible ways are there to form
the executive board?

1.8. John has a basket of fruits containing one apple, one banana, one orange, and one
kiwi. He wants to give one fruit to each of his two little sisters and two fruits to his big
brother. In in how many different ways can he do this?

1.9. There are 12 teams in a soccer league, and each team must play each other twice in
a tournament. What is the number of games that will be played in total?

1.10. What is the number of distinguishable arrangements that can be made from the
word KITCHEN, if the vowels must stay together?

1.11. A family is being arranged in a line for a group photograph. If the family consists
of a mother, a father, and five children, what is the number of arrangements that begin
and end with a parent?
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1.12. There are ten people available for appointment to a committee consisting of six
people. What is the number of committees that can be formed, if Kirsten and James must
be in the committee?

1.13. In how many ways can be drawn numbers in the lottery “5 from 40”?

1.14. What is the number of committees consisting of 4 men and 5 women that can be
formed from 10 men and 13 women?

1.15. If all of the letters in the word PENCILS are used, what is the number of arrange-
ments with all the consonants together?

1.16. If repeated digits are not allowed, what is the number of three digit or four digit
even numbers that can be formed from the numbers 2, 3, 5, 6, 7?

1.17. The map of a small town has streets drawn vertically, and avenues drawn horizontally.
A student wishes to walk to the recreation center, which is 4 blocks East and 5 blocks South
of his home. What is the number of different routes to the recreation center that are 9
blocks in length?

1.18. A committee requires one accountant, two marketing agents, and four board mem-
bers. What is the number of committees that can be formed, if there are four accountants,
three marketing agents, and seven board members available for selection for the committee?

1.19. There are 12 people in line for a movie. If Crystal, Steven, and Jason are friends
and will always stand together, what is the total number of possible arrangements for the
entire line?

1.20. A security code used to consist of two odd digits, followed by four even digits. To
allow more codes to be generated, a new system uses two even digits, followed by any three
digits. If repeated digits are allowed, what is the increase in the number of security codes?

1.21. A multiple choice test has 15 questions. Tested candidates know that four of these
questions have A as an answer, three have B as an answer, six have C as an answer, and
two have D as an answer. What is the number of different answer sheets that can be
created?

1.22. Six points are drawn on a circle. What is the number of triangles that can be formed
from these six points?
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1.23. There are 6 men and 9 women available for selection of a 6-person committee. If the
committee must have at least one man, what is the number of possible committees?

1.24. One bag contains 5 colored marbles and another bag contains 4 colored marbles.
None of the 9 marbles are of the same color. If a person reaches into the first bag and pulls
out two marbles, then reaches into the second bag and pulls out two marbles, what is the
number of possible color combinations?

1.25. A student has 8 tiles that spell the word COMPUTER. If the student now wishes
to use some of these tiles to make a four-letter word that contains exactly 2 vowels and
exactly 2 consonants, what is the number of possible words?

1.26. A boy going on a trip is told that out of his 8 favorite toys, he can bring at most
three toys. What is the number of ways he could select which toys he brings?

1.27. A research team of 6 people is to be formed from 10 chemists, 5 politicians, 8
economists, and 15 biologists. What is the number of possible teams that can be formed
with at least 5 chemists?

1.28. You roll two dice. The first die shows a ONE and the other die rolls under the table
and you cannot see it. Now, what is the probability that both die show ONE?

1.29. What is the probability that the sum of numbers on two dice will be greater than
8, given that the first die is 6?

1.30. Two fair six-sided dice are rolled and the face values are added. What is the proba-
bility of obtaining an odd number greater than 8?

1.31. Three cards are pulled from a deck of 52 cards. What is the probability of obtaining
at least one club?

1.32. Three different DVDs and their corresponding DVD cases are randomly strewn about
on a shelf. If a young child puts the DVDs in the cases at random, what is the probability
of correctly matching all DVDs and cases?

1.33. A 5 digit PIN number can begin with any digit (except for zero) and the remaining
digits have no restriction. If repeated digits are allowed, what is the probability of the PIN
code beginning with a 7 and ending with an 8?

1.34. On the shelf are laid 20 various books among which are 4 books about computers.
What is the probability that these 4 books are placed side by side?
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1.35. Tickets numbered from 1 to 20 are mixed up and then a ticket is drawn at random.
What is the probability that the ticket drawn has a number which is a multiple of 3 or 5?

1.36. A bag contains 2 red, 3 green, and 2 blue balls. Two balls are drawn at random.
What is the probability that none of the balls drawn is blue?

1.37. In a box, there are 8 red, 7 blue, and 6 green balls. One ball is picked up randomly.
What is the probability that it is neither red nor green?

1.38. Three unbiased coins are tossed. What is the probability of getting at most two
heads?

1.39. Two dice are thrown simultaneously. What is the probability of getting two numbers
whose product is even?

1.40. In a class, there are 15 boys and 10 girls. Three students are selected at random.
What is the probability that 1 girl and 2 boys are selected?

1.41. In a lottery, there are 10 prizes and 25 blanks. A lottery is drawn at random. What
is the probability of getting a prize?

1.42. From a pack of 52 cards, two cards are drawn together at random. What is the
probability of both the cards being kings?

1.43. Two dice are tossed. What is the probability that the sum of showed numbers is a
prime number?

1.44. A card is drawn from a pack of 52 cards. What is the probability of getting a queen
of club or a king of heart?

1.45. A bag contains 4 white, 5 red, and 6 blue balls. Three balls are drawn at random
from the bag. What is the probability that all of them are red?

1.46. Two cards are drawn together from a pack of 52 cards. What is the probability that
one is a spade and one is a heart?

1.47. One card is drawn at random from a pack of 52 cards. What is the probability that
the card drawn is a face card (Jack, Queen, or King)?

1.48. A new bag of golf tees contains 10 red tees, 10 orange tees, 10 green tees, and 10
blue tees. You empty the tees into your golf bag. What is the probability of grabbing out
two tees of the same color in a row for you and your partner?
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1.49. In a library box, there are 8 novels, 8 biographies, and 8 war history books. If Jack
selects two books at random, what is the probability of selecting two different kinds of
books in a row?

1.50. A survey of hight school students asked: What is your favourite winter sport? The
results are summarized below:

Grade Snowboarding Skiing Ice Skating TOTAL
6th 68 41 46 155
7th 84 56 70 210
8th 59 74 47 180

TOTAL 211 171 163 545

Using these 545 students as the sample space, a student from this study is randomly se-
lected.

a) What is the probability of selecting a student whose favorite sport is skiing?

b) What is the probability of selecting a 6th grade student?

c) If the selected student is a 7th grade student, what is the probability that the student
prefers ice skating?

d) If the student selected prefers snowboarding, what is the probability that the student
is a 6th grade student?

e) If the selected student is an 8th grade student, what is the probability that the
student prefers skiing or ice skating?

1.51. In a shipment of 20 computers, 3 are defective. Three computers are randomly
selected and tested. What is the probability that all three are defective if the first and the
second ones are not replaced after being tested?

1.52. On a math test, 5 of 20 students got an A. If three students are chosen at random
without replacement, what is the probability that all three got an A on the test?

1.53. If a five card hand is dealt from a deck of 52 cards, what is the probability the hand
contains exactly one heart?

1.54. If a five card hand is dealt from a deck of 52 cards, what is the probability the hand
contains at least one heart?
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1.55. Seven people are randomly selected from a group of 10 men and 11 women to form
a committee. What is the probability that exactly 5 males are on the committee?

1.56. Five balls are drawn without replacement from a bag containing 3 metal balls and
5 glass balls. What is the probability that at least 3 glass balls are drawn?

1.57. A bookcase contains 6 different maths books and 12 different physics books. If a
student randomly selects two of these books, what is the probability that they are both
maths books or both physics books?

1.5 Results of Unsolved Tasks
1.1. P (4) = 4! = 24

1.2. P (3) = 3! = 6

1.3. V ′(2, 8) = 28 = 256

1.4. V ′(16, 8) = 168

1.5. C(52, 3) =
(

52
3

)
= 22100

1.6. V ′(3, 2) = 32 = 9

1.7. C(10, 4) =
(

10
4

)
= 210

1.8. C(4, 2) · C(2, 1) =
(

4
2

)
·
(

2
1

)
= 12

1.9. 2 · C(12, 2) = 2 ·
(

12
2

)
= 132

1.10. 6 · P (6) · P (2) = 6 · 6! · 2! = 8640

1.11. P (5) · P (2) = 5! · 2! = 240

1.12. C(8, 4) =
(

8
4

)
= 70

1.13. C(40, 5) =
(

40
5

)
= 658008

1.14. C(10, 4) · C(13, 5) =
(

10
4

)
·
(

13
5

)
= 270270

1.15. 3 · P (5) · P (3) = 3 · 5! · 3! = 2160

1.16. 2 · V ′(4, 2) + 2 · V ′(4, 3) = 2 · 4!
2! + 2 · 4!

1! = 72

1.17. P4,5(9) = 9!
4!·5! = 126
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1.18. C(4, 1) · C(3, 2) · C(7, 4) =
(

4
1

)
·
(

3
2

)
·
(

7
4

)
= 420

1.19. P (10) · P (3) = 10! · 3! = 21772800

1.20. V ′(5, 2) · V ′(10, 3)− V ′(5, 2) · V ′(5, 4) = 52 · 103 − 52 · 54 = 9375

1.21. P4,3,6,2(15) = 15!
4!·3!·6!·2! = 6306300

1.22. C(6, 3) =
(

6
3

)
= 20

1.23. C(15, 6)− C(9, 6) =
(

15
6

)
−
(

9
6

)
= 4921

1.24. C(5, 2) · C(4, 2) =
(

4
2

)
·
(

4
2

)
= 60

1.25. C(5, 2) · C(3, 2) · C(4, 2) · P (2) · P (2) =
(

5
2

)(
3
2

)
·
(

4
2

)
· 2! · 2! = 720

1.26. C(8, 3) =
(

8
3

)
= 56

1.27. C(10, 5) · C(28, 1) + C(10, 6) =
(

10
5

)
·
(

28
1

)
+
(

10
6

)
= 7266

1.28. P (A) = 1
6 = 0, 16

1.29. P (A) = 2
3 = 0, 6

1.30. P (A) = 6
36 = 1

6 = 0, 16

1.31. P (A) = 1− (39
3 )

(52
3 ) = 997

1700 = 0, 58647

1.32. P (A) = 1
3! = 1

6

1.33. P (A) = 103

9·104 = 1
90 = 0, 01

1.34. P (A) = 4!·17!
20! = 1

285 = 0, 03509

1.35. P (A) = 8
20 = 0, 4

1.36. P (A) = (2
2)+(2

1)·(3
1)+(3

2)
(7

2)
= 10

21 = 0, 47619

1.37. P (A) = 7
21 = 1

3 = 0, 3

1.38. P (A) = 1− 1
23 = 7

8 = 0, 875

1.39. P (A) = 27
36 = 3

4 = 0, 75

1.40. P (A) = (15
2 )·(10

1 )
(25

3 ) = 21
46 = 0, 45652

1.41. P (A) = 10
35 = 2

7 = 0, 28571
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1.42. P (A) = (4
2)

(52
2 ) = 1

221 = 0, 00452

1.43. P (A) = 14
36 = 7

18 = 0, 38

1.44. P (A) = 2
26 = 1

13 = 0, 07692

1.45. P (A) = (5
3)

(15
3 ) = 2

91 = 0, 02198

1.46. P (A) = (13
1 )·(13

1 )
(52

2 ) = 13
102 = 0, 12745

1.47. P (A) = 12
52 = 3

13 = 0, 23077

1.48. P (A) = 4·(10
2 )

(40
2 ) = 3

13 = 0, 23077

1.49. P (A) = 1− 3·(8
2)

(24
2 ) = 16

23 = 0, 69565

1.50.

a) P (A1) = 171
545 = 0, 31376

b) P (A2) = 155
545 = 0, 2844

c) P (A3) = 70
210 = 1

3 = 0, 3

d) P (A4) = 68
211 = 0, 32227

e) P (A5) = 121
180 = 0, 672

1.51. P (A) = 1
(20

3 ) = 0, 000877

1.52. P (A) = (5
3)

(20
3 ) = 1

114 = 0, 00877

1.53. P (A) = (13
1 )·(39

4 )
(52

5 ) = 0, 4114

1.54. P (A) = 7411
9520 = 1− (39

5 )
(52

5 ) = 0, 77847

1.55. P (A) = 77
646 = (10

5 )·(11
2 )

(21
7 ) = 0, 11919

1.56. P (A) = 23
28 = (5

3)·(3
2)+(5

4)·(3
1)+(5

5)·(3
0)

(8
5)

= 0, 82143

1.57. P (A) = 9
17 = 1− (6

1)·(12
1 )

(18
2 ) = 0, 52941



Chapter 2

Probability Theory

2.1 Probability
Definition 2.1 (Axiomatic definition of probability). Let γ a be a space of elementary
events and let τ be a sample space over γ. Let the following axioms be fulfilled:

A1: to each event A ∈ τ is assigned exactly one non-negative number P (A) which is
called a probability of event A;

A2: P (I) = 1;

A3: for each system of disjoint events A1, A2, . . . , An, · · · ∈ τ holds

P (A1 ∪ A2 ∪ · · · ∪ An ∪ . . . ) = P (A1) + P (A2) + · · ·+ P (An) + . . . (2.1)

We call the triplet [γ, τ, P ] a probability space.

It is easy to see that the classical definition of the probability is consistent with the
axioms A1–A3. We can prove the assertions of the following theorem using axioms A1–A3.

Theorem 2.1. Let [γ, τ, P ] be a probability space. The following assertions hold:

1. P (∅) = 0;

2. P (A) = 1− P (A) for each A ∈ τ ;

3. if A ⊆ B then P (A) ≤ P (B);

4. for each A ∈ τ is 0 ≤ P (A) ≤ 1;

5. P (A−B) = P (A)− P (A ∩B) for each A, B ∈ τ ;

6. P (A ∪B) = P (A) + P (B)− P (A ∩B) for each A, B ∈ τ ;

25
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7. for each A, B, C ∈ τ the following equality holds:

P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C);

8. the generalization: for each A1, A2, . . . , An ∈ τ

P (
n
∪
i=1

Ai) =
n∑
i=1

P (Ai)−
n∑

i,j=1, i<j
P (Ai ∩ Aj) +

n∑
i,j,k=1, i<j<k

P (Ai ∩ Aj ∩ Ak)− . . .

· · ·+ (−1)n+1P (
n
∩
i=1

Ai).

Proof. For the demonstration example we prove only the first claim. From the prop-
erties of sample space it follows that ∅ ∈ τ and from A1 we get the existence of P (∅).
Since I ∈ τ , then I ∪ ∅ ∈ τ and from A1 there exists P (I ∪ ∅). Events I, ∅ are dis-
joint, so P (I ∪ ∅) = P (I) + P (∅) according to A3. Obviously, I ∪ ∅ = I, which implies
P (I) = P (I) + P (∅) and consequently P (∅) = 0. �

2.2 Conditional Probability
The conditional probability of an event A given B is the probability that the event A
will occur given the knowledge that the event B has already occurred. This probability
is written P (A|B), notation for the probability of A given B. In the case where events A
and B are independent (where event B has no effect on the probability of event A), the
conditional probability of event A given B is simply the probability of event A, that is
P (A).
Definition 2.2 (Conditional probability). Let [γ, τ, P ] be a probability space. The
probability of A given B is defined as follows:

P (A|B) = P (A ∩B)
P (B) . (2.2)

If P (B) = 0 then P (A|B) is not defined.

If P (A) 6= 0 and P (B) 6= 0 then P (B|A) = P (A ∩B)
P (A) . Using this equality together

with (2.2) we get P (A∩B) = P (A) ·P (B|A) and P (A∩B) = P (B) ·P (A|B) which implies

P (B) · P (A|B) = P (A) · P (B|A). (2.3)
The following theorem is a generalization of the previous reasoning.
Theorem 2.2. Let [γ, τ, P ] be a probability space and let A1, A2, . . . , An ∈ τ . Then

P (
n
∩
i=1

Ai) = P (A1) · P (A2|A1) · P (A3|A1 ∩ A2) · · · · · P (An|A1 ∩ A2 ∩ · · · ∩ An−1) (2.4)

The relationship between the hypothesis and the conditional probability is expressed
by the following theorem.
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Theorem 2.3 (Total Probability Law). Let [γ, τ, P ] be a probability space and let
H1, H2, . . . , Hn be a complete system of hypothesis. Then for each A ∈ τ the following
equality holds:

P (A) = P (H1) · P (A|H1) + P (H2) · P (A|H2) + · · ·+ P (Hn) · P (A|Hn) =

=
n∑
i=1

P (Hi) · P (A|Hi). (2.5)

Proof. For an arbitrary event A we have

A = A ∩ I = A ∩ (H1 ∪H2 ∪ · · · ∪Hn) = (A ∩H1) ∪ (A ∩H2) · · · ∪ (A ∩Hn).

Since events Hi are mutually disjoint and A ∩ Hi ⊂ Hi, events (A ∩ H1), (A ∩ H2), . . . ,
(A ∩Hn) are mutually disjoint, too. According to A3 we get

P (A) = P (A ∩H1) + P (A ∩H2) + · · ·+ P (A ∩Hn).

We obtain Equality (2.5) by substituting P (A∩Hi) = P (Hi)·P (A|Hi) for all i = 1, 2, . . . , n.

Theorem 2.4 (Bayes’ theorem). Let [γ, τ, P ] be a probability space, H1, H2, . . . , Hn

be hypothesis and A ∈ τ be such that P (A) 6= 0. Then for each Hk, k = 1, 2, . . . , n the
following equality holds:

P (Hk|A) = P (Hk) · P (A|Hk)∑n
i=1 P (Hi) · P (A|Hi)

= P (Hk) · P (A|Hk)
P (A) . (2.6)

2.3 Independent Events

2.3.1 Probability of Independent Events
Definition 2.3 (Independent events). Two events A, B are independent if the occur-
rence of one does not affect the probability of the other or if the probability of one of them
equals zero, i.e., one of the following possibilities occurs:

P (A|B) = P (A) or P (B) = 0 or P (B|A) = P (B) or P (A) = 0. (2.7)

Two events are dependent if the outcome or occurrence of the first affects the outcome
or occurrence of the second so that the probability is changed.

Theorem 2.5. Let [γ, τ, P ] be a probability space. Events A, B ∈ τ are independent if
and only if

P (A ∩B) = P (A) · P (B). (2.8)
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Remark 2.1.

1. Equality (2.8) gives an equivalent condition for the independence of events, and it is
frequently used as a definition of independent events.

2. The independence of events A and B implies the independence of these pairs of
events:

A and B, A and B, A and B.

Definition 2.4. The system of events A1, A2, . . . , An is overall independent, if the prob-
ability of occurrence of one of them does not change upon the occurrence of any group of
other events or if the probability of one of them equals zero.

Theorem 2.6 (Probability of intersection of overall independent events). Let
[γ, τ, P ] be a probability space. The system of events A1, A2, . . . , An is overall independent,
if one of the following conditions is satisfied:

1. for each k ≤ n holds
P (

k
∩
j=1

Aij) =
k

Π
j=1

P (Aij), (2.9)

2.
P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1) · P (A2) · . . . · P (An). (2.10)

Theorem 2.7 (Probability of union of overall independent events). Let [γ, τ, P ]
be a probability space. If the system of events A1, A2, . . . , An is overall independent then

P (A1 ∪ A2 ∪ · · · ∪ An) = 1− P (A1) · P (A2) · · · · · P (An). (2.11)

2.3.2 Probability of Repeated Independent Trials
Many experiments share the common element that their outcomes can be classified into
one of two events, e.g., a coin can come up head or tail; a child can be male or female;
a person can be employed or unemployed. These outcomes are often labeled as “success”
or “failure”. Note that there is no connotation of “goodness” here — for example, when
looking at births, the statistician might label the birth of a boy as a “success” and the
birth of a girl as a “failure” but the parents would not necessarily see things that way. The
usual notation is p is probability of success, q is probability of failure. Note that p+ q = 1.
We are often interested in the result of independent, repeated trials, i.e., the number of
successes in repeated trials.

For example, we can determine the probability of getting 2 numbers “6” in 5 die rollings.
At first, we have to determine the probability of one possible way the event can occur, and
then determine the number of different ways the event can occur. That is,

P (event) = (number of ways event can occur) · P (one occurrence).
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In our example we will call getting a “6” a “success.” Also, in this case, the number of
repetitions is n = 5, the number of successes is r = 2, and the number of failures is
n − r = 5 − 2 = 3. One way this can occur is if the first 2 rollings are “6” and the last
three are not “6”. The probability is (1/6)2 · (5/6)3. The number of ways event can occur
is
(

5
2

)
, so the probability of this event is

P =
(

5
2

)
·
(1

6

)2
·
(5

6

)3
= 3750

65 = 0, 48335.

Theorem 2.8 ( Bernoulli theorem). Let p be the probability that the outcome of trial
is "success" considering event A and Pn,p(k) be the probability that repeating a trial n
times the number of "success" outcomes is k. Then

Pn,p(k) =
(
n

k

)
· pk · (1− p)n−k for k = 0, 1, . . . , n. (2.12)

2.4 Solved Examples
Example 2.1. In a math class of 30 students, 17 are boys and 13 are girls. On a unit test,
4 boys and 5 girls made an “A” grade. If a student is chosen at random from the class,
what is the probability of choosing a girl or an “A” student?
Solution:
Let A be the event that chosen student made “A” and B be the event that chosen student
is a girl. We want to compute P (B ∪ A). We get

P (B ∪ A) = P (B) + P (A)− P (B ∩ A) = 13
30 + 9

30 −
5
30 = 17

30 .

√

Example 2.2. Suppose that five good fuses and two defective ones have been mixed up.
To find the defective fuses, we test them one-by-one, at random and without replacement.
What is the probability that we are lucky and find both of the defective fuses in the first
two tests?
Solution:
Let A be the event that we find a defective fuse in the first test and B be the event that
we find a defective fuse in the second test. We are told that P (A) = 2

7 and P (B|A) = 1/6.
We want to compute P (A ∩B). We get

P (A ∩B) = P (A) · P (B|A) = 2
7 ·

1
6 = 1

21 = 0, 047619.

√
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Example 2.3. Mr. Parietti needs two students to help him with a science demonstration
for his class of 18 girls and 12 boys. He randomly chooses one student who comes to the
front of the room. Then he chooses a second student from those still seated. What is the
probability that both students chosen are girls?
Solution:
Let A be the event that the first chosen student is a girl and let B be the event that the
second chosen student is a girl. We compute

P (A ∩B) = P (A) · P (B|A) = 18
30 ·

17
29 = 306

870 = 51
145 = 0, 35172.

√

Example 2.4. If six cards are selected at random (without replacement) from a standard
deck of 52 cards, what is the probability that there will be no pairs (two cards of the same
denomination)?
Solution:
Let Ai be the event that the first i cards have no pair among them. Then we want to
compute P (A6). We have P (A1) = 1 and P (Ai ∩ Ai+1) = P (Ai+1), since Ai+1 ⊂ Ai. We
have P (A2) = P (A1 ∩A2) = P (A1) · P (A2|A1) = 48/51 because there are 51 cards and 48
of them has another denomination than the first card. At the same manner we get

P (A3) = P (A2 ∩ A3) = P (A2) · P (A3|A2) = 48
51 ·

44
50 , . . . ,

P (A6) = P (A2)·P (A3|A2)·P (A4|A3)·P (A5|A4)·P (A6|A5) = 48
51 ·

44
50 ·

40
49 ·

36
48 ·

32
47 = 0, 34524.

But, there is also another possibility for determining the possibility using the classical
definition of probability only. Since the selection is without replacement, the number of a
elementary events n =

(
52
6

)
. The number of elementary events of which consists event A is

m =
(

13
6

)
· 46, since there are

(
13
6

)
possibilities for choosing 6 different denominations and

for each of them there are 4 cards. We get

P (A) =

(
13
6

)
· 46(

52
6

) = 0, 34524.

√

Example 2.5. Two cards from an ordinary deck of 52 cards are missing. What is the
probability that a random card drawn from this 50-card deck is a spade?
Solution:
Let A be the event that the randomly drawn card is a spade. Let Hi be the event that i
spades are missing from the 50-card (defective) deck for i = 0, 1, 2. We want to compute
P (A), which we compute by conditioning on how many spades are missing from the original
(good) deck and by using the total law probability:

P (A) = P (A|H0) · P (H0) + P (A|H1) · P (H1) + P (A|H2) · P (H2) =
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= 13
50 ·

(
13
0

)
·
(

39
2

)
(

52
2

) + 12
50 ·

(
13
1

)
·
(

39
1

)
(

52
2

) + 11
50 ·

(
13
2

)
·
(

39
0

)
(

52
2

) = 1/4.

√

Example 2.6. One half percent of the population has a particular disease. A test is
developed for the disease. The test gives a false positive 3% of the time and a false
negative 2% of the time.

a) What is the probability that Joe (a random person) tests positive?
b) Joe just got the bad news that the test came back positive; what is the probability

that Joe has the disease?

Solution:
Let H1 be the event that Joe has the disease and H2 be the event that Joe has not
the disease. Let A be the event that Joe’s test comes back positive. We are told that
P (H1) = 0, 005 since 0, 5% of the population has the disease. This follows that
P (H2) = 0, 995. We are also told that P (A|H1) = 0, 98, since 2% of the time a per-
son having the disease is missed (“false negative”). We are told that P (A|H2) = 0, 03,
since there are 3% “false positives”.

a) We want to compute P (A). According to the total law probability we compute
P (A) = P (A|H1) ·P (H1) +P (A|H2) ·P (H2) = 0, 98 · 0, 005 + 0, 03 · 0, 995 = 0, 03475.

b) We have to compute P (H1|A). According to the Bayes theorem we get

P (H1|A) = P (A|H1) · P (H1)
P (A|H1) · P (H1) + P (A|H2) · P (H2) = 0, 98 · 0, 005

0, 03475 = 0, 13818.

√

Example 2.7. Urn 1 contains 5 white balls and 7 black balls. Urn 2 contains 3 white and
12 black balls. A fair coin is flipped; if it is head, a ball is drawn from Urn 1, and if it is
tail, a ball is drawn from Urn 2. Suppose that this experiment is done and you learn that
a white ball was selected. What is the probability that this ball was in fact taken from
Urn 2?
Solution:
Let H1 be the event that the coin flip was tails and H2 be the event that the coin flip was
heads. Let A be the event that a white ball is selected. From the given data, we know
that P (A|H1) = 5/12 and that P (A|H2) = 3/15 = 1/5 . Since the coin is fair, we know
that P (H1) = P (H2) = 1/2. We want to compute P (H2|A), which we do using the Bayes
Formula:

P (H2|A) = (1/5) · (1/2)
(1/5) · (1/2) + (5/12) · (1/2) = 12

37 = 0, 3243.
√
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Example 2.8. Your neighbor has 2 children. He picks one of them at random and comes
by your house; he brings his son Joe. What is the probability that Joe’s sibling is a
brother?
Solution:
We are given the event A that “your neighbor randomly choose one of his 2 children, and
that chosen child is a son”. Let H1 be the event that your neighbour has two boys, H2
be the event that your neighbour has two girls, and H3 be the event that your neighbour
has one girl and one boy. Supposing that the birth of a boy is just as likely as the birth
of a girl we have P (H1) = P (H2) = 1/4, P (H3) = 1/2. The conditional probabilities are
P (A|H1) = 1, P (A|H2) = 0 and P (A|H3) = 1/2. We compute

P (H1|A) = P (H1 ∩ A)
P (A) = P (H1)

3∑
i=1

P (A|Hi) · P (Hi)
=

= 1/4
1 · (1/4) + 0 · (1/4) + (1/2) · (1/2) = 1/2.

√

Example 2.9. Consider the game of Let’s make a deal in which there are three doors
(numbered 1, 2, 3), one of which has a car behind it and two of which are empty (have
“booby prizes”). You initially select Door 1, then, before it is opened, Monty Hall tells you
that Door 3 is empty (has a booby prize). You are then given the option to change your
selection from Door 1 to the unopened Door 2. What is the probability that you will win
the car if you change your door selection to Door 2?
Solution:
Let A be the event that the car is behind Door 2 and B be the event that Door 3 is empty.
The probability that you win by changing to Door 2, given that he tells you Door 3 is
empty is:

P (A|B) = P (A ∩B)
P (B) = 1/3

2/3 = 1/2
√

Example 2.10. Consider the game of Let’s Make a Deal in which there are five doors
(numbered 1, 2, 3, 4, and 5), one has a car behind it and four are empty (have “booby
prizes”). You initially select Door 1, then, before it is opened, Monty Hall opens Door 2
and Door 4 that are empty (selecting the two at random if there are three empty doors
among 2, 3, 4, 5). (We are assuming that Monty Hall knows where the car is and that he
selects doors to open only from among those that are empty.) You are then given the
option to change your selection from Door 1 to Door 3. Given that Monty opens Door
2 and Door 4, what is the probability that you will win the car if you change your door
selection to Door 3? Also, compute the probability that you will win a car if you do not
change. What is the better, change to Door 3 or stay with Door 1?
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Solution:
Let Hi be the event that you will win a car by selecting Door i. Let A be the event that
Monty shows you Door 2 and Door 4. The probability that you win by changing to Door
3, given that he shows you Door 2 and Door 4 is:

P (H3|A) = P (A|H3) · P (H3)
5∑
i=1

P (A|Hi) · P (Hi)
=

=
1/
(

3
2

)
· 1/5

1/
(

4
2

)
· 1/5 + 0 + 1/

(
3
2

)
· 1/5 + 0 + 1/

(
3
2

)
· 1/5

= 2
5 .

The probability that you win staying with Door 1, given that he shows you Door 2 and
Door 44 is:

P (H1|A) = P (A|H1) · P (H1)
5∑
i=1

P (A|Hi · P (Hi))
=

=
1/
(

4
2

)
· 1/5

1/
(

4
2

)
· 1/5 + 0 + 1/

(
3
2

)
· 1/5 + 0 + 1/

(
3
2

)
· 1/5

= 1
5 .

Since P (H3|A) > P (H1|A),it is better to change the selection from Door 1 to Door 3.
√

Example 2.11. Using the formal definition of independence, determine whether events A
and B are independent or dependent.
Rolling two dice, with

Event A: Rolling 1 on the first die.
Event B: The dice summing to 7.

Solution:
We have

P (A) = 1/6, P (B|A) = 1/6, P (A ∩B) = 1
36 .

Since P (A) · P (B|A) = P (A ∩B), the events are independent. √

Example 2.12. Determine whether events A and B are independent or dependent.
Flip three coins, with

Event A: The first two coins are heads.
Event B: There are at least two heads among the three coins.

Solution:
We have

P (A) = 2
8 = 1

4 , P (B) = 4
8 = 1

2 , P (A ∩B) = 2
8 = 1

4 .

Since P (A) ·P (B) 6= P (A∩B), according to Theorem 2.5 the events are dependent.
√
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Example 2.13. Suppose you flip a fair coin 6 times. What is the probability that the
coin will land head exactly 4 times?
Solution:
We have the number of trials n = 6, the number of successes k = 4 and the probability
p = 1/2. According to (2.12) we have

P6(4) =
(

6
4

)(1
2

)4
·
(

1− 1
2

)6−4
= 0, 234375.

√

Example 2.14. Suppose you toss a pair of dice 8 times. What is the probability that the
dice will get a sum of 7 at most 3 times?
Solution:
The number of ways you can have a sum 7 is 6, since the two dice can land as (1, 6), (2, 5),
(3, 4), (4, 3), (5, 2), (6, 1). There are 36 ways the two dice can land, so the probability of
success is p = 1/6. We have n = 8, k = 0, 1, 2, 3 and by (2.12) we obtain

P (A) = P8(0) + P8(1) + P8(2) + P8(3) =
(

8
0

)(1
6

)0
·
(5

6

)8
+
(

8
1

)(1
6

)1
·
(5

6

)7
+

+
(

8
2

)(1
6

)2
·
(5

6

)6
+
(

8
3

)(1
6

)3
·
(5

6

)5
= 0, 96934.

√

Example 2.15. An apartment building has residents living on the second and third floors.
The residents use an elevator to get to their apartments. There are 20 people living on the
second floor. The third floor has more luxurious, larger apartments and there are 6 people
living on the third floor. Six random residents use the elevator to get to their apartments.
What is the probability that exactly 4 of the people exit on the second floor and that 2
people exit on the third floor?

Solution:
We consider each time one of the resident uses the elevator as a separate event. We will
call an exiting on the second floor a “success.” So the probability of success is p = 20/26 =
10/13. We have n = 6, k = 4 and by (2.12) we obtain

P6(4) =
(

6
4

)(10
13

)4
·
( 3

13

)2
= 0, 194.

√
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2.5 Unsolved tasks

2.1. You decide to tell your fortune by drawing two cards from a standard deck of 52 cards.
What is the probability of drawing two cards of the same suite in a row? The cards are
not replaced in the deck.

2.2. What is the probability of drawing two aces from a standard deck of cards, given that
the first card is an ace? The cards are not returned to the deck.

2.3. A new superman MasterCard has been issued to 2000 customers. Of these customers,
1500 hold a Visa card, 500 hold an American Express card and 40 hold a Visa card and
an American Express card. Find the probability that a customer chosen at random holds
a Visa card, given that the customer holds an American Express card.

2.4. The Census Bureau has estimated 80% of men lives at least 70 years and 50% lives
at least 80 years. What is the probability that a man lives at least 80 years given that he
has just celebrated his 70th birthday?

2.5. There are two urns containing coloured balls. The first urn contains 50 red balls and
50 blue balls. The second urn contains 30 red balls and 70 blue balls. One of the two urns
is randomly chosen and then a ball is drawn at random from one of the two urns.

a) What is the probability, that a red ball is drawn?
b) If a red ball is drawn, what is the probability that it comes from the first urn?

2.6. An economics consulting firm has created a model to predict recessions. The model
predicts a recession with probability 80% when a recession is indeed coming and with
probability 10% when no recession is coming. The probability of falling into a recession is
20%. If the model predicts a recession, what is the probability that a recession will indeed
come?

2.7. Alice has two coins in her pocket, a fair coin (head on one side and tail on the other
side) and an unfair two-headed coin. She picks one at random from her pocket, flips it and
obtains head. What is the probability that she flipped the fair coin?

2.8. A firm undertakes two projects, A and B. The probabilities of having a successful
outcome are 3/4 for project A and 1/2 for project B. The probability that both projects
will have a successful outcome is 7/16. Are the two outcomes independent?

2.9. A firm undertakes two projects, A and B. The probabilities of having a successful
outcome are 2/3 for project A and 4/5 for project B. What is the probability that neither
of the two projects will have a successful outcome if their outcomes are independent?
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2.10. A card is chosen at random from a standard deck of 52 playing cards. Without
replacing it, a second card is chosen. What is the probability that the first card chosen is
a queen and the second card chosen is a jack?

2.11. Four cards are chosen at random from a deck of 52 cards without replacement. What
is the probability of choosing a ten, a nine, an eight and a seven in this order?

2.12. A survey determines that in a particular town, 33% of the residents jog, 42% bike,
and 12% do both activities. What is the probability that a randomly selected person does
neither activity?

2.13. A basket contains 20 fruits of which 10 are oranges, 8 are apples, and 2 are tangerines.
You randomly select 5 fruits and give them to your friend. What is the probability that
among the 5 fruits, your friend will get 2 tangerines?

2.14. A school survey found that 7 out of 30 students walk to school. If four students
are selected at random without replacement, what is the probability that the first and the
second walk to school, but the third and the fourth do not walk to school?

2.15. The probability of a New York teenager owning a skateboard is 0,37, of owning a
bicycle is 0,81 and of owning both is 0,36. If a New York teenager is chosen at random,
what is the probability that the teenager owns a skateboard or a bicycle?

2.16. A single 6-sided die is rolled. What is the probability of rolling a number greater
than 3 or an even number?

2.17. In a junior football league, 55% of the players come from Western Canada, and 45%
are from Eastern Canada. From this league, 17% of the Western players and 11% of the
Eastern players will go to the CFL.
a) What is the probability that a randomly chosen player will go to CFL?
b) If a randomly chosen CFL player who came from the junior league is selected, what is
the probability that he came from Eastern Canada?

2.18. The probability of having a particular disease is 5%. The test to determine if a
person has this disease is 83% accurate. What is the probability that a randomly selected
person tests positive?

2.19. If 3% of the population has a specific disease, and the test for this disease is 92%
accurate, what is the probability a person does not have the disease given that the test
result is positive?
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2.20. Bag A contains three metal balls and six glass balls, and bag B contains four metal
balls and three glass balls. In a game, a person rolls a die to determine which bag to pull
a ball out of. If the die rolls a 1, 2 or 3, the ball is pulled from bag A. If the die comes up
4, 5, or 6, the ball is pulled from bag B.

a) What is the probability that a glass ball is selected?

b) If the ball selected is made of glass, what is the probability it came from bag B?

2.21. Bag A contains four metal balls and six glass balls, and bag B contains five metal
balls and two glass balls.

a) A ball is randomly selected from bag A and placed in bag B. A ball is then pulled at
random out of bag B. What is the probability that the ball from bag B is metal?

b) If a metal ball was selected from bag B, what is the probability that a glass ball was
transferred from bag A to bag B?

2.22. A grocery store obtains 35% of its products from vendor A, and 65% of its produce
from vendor B. It is expected that spoilage will result in 12% of vendor A’s produce and
17% of vendor B’s products to be discarded. What is the probability a randomly picked
product came from vendor A, given that it was picked from the discard pile?

2.23. A security code consists of 8 digits, which may be any number from 0 to 9. The first
digit is allowed to be zero and repetitions are allowed. What is the probability a particular
code begins with exactly two 7’s, to the nearest hundredth?

2.24. Captain Tiffany has a ship. The ship is two furlongs from the dread pirate Umaima
and her merciless band of thieves. The Captain has probability 3/5 of hitting the pirate
ship. The pirate only has one good eye, so she hits the Captain’s ship with probability
4/9. If both fire their cannons at the same time, what is the probability that the Captain
hits the pirate ship, but the pirate misses?

2.25. Carmelo Anthony is shooting free throws. Making or missing free throws doesn’t
change the probability that he will make his next one, and he makes his free throws 84%
of the time. What is the probability of Carmelo Anthony making none of his next 5 free
throw attempts?

2.26. Carlos Boozer is shooting free throws. Making or missing free throws doesn’t change
the probability that he will make his next one, and he makes his free throws 70% of the
time. What is the probability of Carlos Boozer making 2 of his next 5 free throw attempts?
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2.27. A test consists of 10 multiple choice questions with five choices for each question
and exactly one correct answer for each question. As an experiment, you GUESS on each
and every answer without even reading the questions. What is the probability of getting
exactly 6 questions correct on this test?

2.28. At a certain intersection, the light for eastbound traffic is red for 15 seconds, yellow
for 5 seconds, and green for 30 seconds. Find the probability that out of the next eight
eastbound cars that arrive randomly at the light, exactly three will be stopped by a red
light.

2.29. When rolling a die 100 times, what is the probability of rolling a “4” exactly 25
times?

2.30. A doctor notes that 20% of the patients he tests actually have mononucleosis. When
a patient has mononucleosis, the test shows a positive result (indicating disease presence)
90% of the time. When a patient does not have the disease, the test shows a positive
result 10% of the time. If a patient’s test result is positive, what is the probability that
the patient actually has the mononucleosis?

2.31. Four radar systems are arranged so that they work independently of each other. Each
system has a 0,9 chance of detecting an approaching airborne object. Find the probability
that at least one radar system will fail to detect an approaching object.

2.32. A federal agency is trying to decide which of two waste dump projects to investigate.
An administrator estimates that the probability of federal law violations in the first project
is 0,3. She also estimates that the probability of violations in the second project is 0,25.
In addition, she believes the occurrence of violations in these two projects are mutually
exclusive. What is the probability of federal law violations in the first project or in the
second project or both?

2.33. A manufacturer of hand soap has introduced a new product. An extensive survey
indicates that 40% of the people have seen advertising for the new product. It also showed
that 20% of the people in the survey had tried the new product. In addition, 15% of those
in the survey had seen it advertised and had tried the product. What is the probability
that a randomly chosen person would have seen the advertising for the new product or
have tried the product or both?

2.34. Box I contains 7 red and 3 white balls and box II contains 2 red and 6 white balls.
First a box is selected at random (each box is as likely to be selected as the other) and
then a ball is drawn from the box. If a red ball is drawn, what is the probability that it
came from box I?
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2.35. Probability can be used to interpret the results of a test given to determine if a
person is using drugs. Suppose we assume that 5% of people are drug users. A test is 96%
accurate, which we’ll say means that if a person is a drug user, the result is positive 96%
of the time, and if the person is not a drug user, the result is negative 96% of the time. A
randomly chosen person tests positive. What is the probability that the person is a drug
user?

2.36. Suppose that the test for drug use is given to a group of people who are known to
have a higher likelihood of being drug users. Assume 40% of the people in this group are
drug users. A test is 98% accurate. What is the probability that an individual in this
group who tests positive really is not a drug user?

2.37. A manufacturer obtains computer modems from three different subcontractors: 30%
from A, 45% from B, and 25% from C. Past experience has shown that the defective rates
for these subcontractors are 3%, 1%, and 4% respectively. If a modem is returned to the
manufacturer by a customer because it was found to be defective, what is the probability
that it came from subcontractor C?

2.38. A pet store owner sells specialty clothes for pets. From past data 5% of customers
buy specially clothes for their pets. What is the probability that at least 4 of the first 20
customers buy specialty clothes for their pets?

2.39. The owner of a small convenience store notices that only 5% of customers buy
magazines.

a) What is the probability that the first customer to buy a magazine is the 4th customer?
b) What is the probability that the first customer to buy a magazine is the 8th customer?

2.40. In the typical bag of candies are 6 brown candies, 4 red candies, 4 yellow candies,
2 green candies, 2 orange candies and 2 blue candies. You have just purchased a bag of
candies and select one candy at a time from the bag. What is the probability that

a) the first red one is the 4th candy you select from the bag,
a) the first blue one is the 3th candy you select from the bag?

2.41. A student takes a multiple choice test with 20 questions, each with 5 choices (only
one of which is correct). Suppose that the student blindly guesses. What is the probability
that the student answers

a) exactly 10 questions correctly,
b) at most 5 questions correctly,
c) at least 5 questions correctly?
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2.42. Suppose you independently flip a coin 4 times and the outcome of each toss can be
either head or tails. What is the probability of obtaining exactly 2 tails?

2.43. Suppose you independently throw a dart 10 times. Each time you throw a dart, the
probability of hitting the target is 3/4. What is the probability of hitting the target

a) exactly 5 times,

b) less than 5 times,

c) more than 5 times?

2.44. A standard, fair die was tossed 10 times. What is the probability that

a) the number 6 was showed at least three times,

b) the number greater than 4 was showed exactly five times,

c) the odd number was showed at most four times?

2.45. The probability for a child to catch a certain disease is 20%. Find the probability
that the 12th child exposed to the disease will be the 3rd to catch it.

2.46. Suppose that 20 patients arrive at a hospital on any given day. Assume that 10% of
all the patients of this hospital are emergency cases.

a) Find the probability that exactly 5 of the 20 patients are emergency cases.

b) Find the probability that none of the 20 patients is emergency case.

c) Find the probability that all 20 patients are emergency cases.

d) Find the probability that at least 4 of the 20 patients are emergency cases.

e) Find the probability that more than 4 of the 20 patients are emergency cases.

2.47. Patients arrive at a hospital. Assume that 10% of all the patients of this hospital
are emergency cases.

a) Find the probability that at any given day the 20th patient will be the first emergency
case.

b) Find the probability that the first emergency case will occur after the arrival of the
20th patient.

c) Find the probability that the first emergency case will occur on or before the arrival
of the 15th patient.
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2.48. An apartment building has 11 residents. There are 7 residents on the second floor
and 4 residents on the third floor. Six people use the elevator at random to go to their
apartments. What is the probability that at most 3 of the residents exit on the second
floor?

2.49. A die is rolled 8 times. Given that there were 3 sixes in the 8 rolls, what is the
probability that there were 2 sixes in the first 5 rolls?

2.50. A man fires 8 shots at a target. Assume that the shots are independent, and each
shot hits the bull’s eye with probability 0,7.

a) What is the chance that he hits the bull’s eye exactly 4 times?
b) Given that he hits the bull’s eye at least twice, what is the chance that he hits the

bull’s eye exactly 4 times?
c) Given that the first two shots hit the bull’s eye, what is the chance that he hits the

bull’s eye exactly 4 times in 8 shots?

2.51. A gambler decides to keep betting on red at roulette, and stop as soon as she has
won a total five bets.

a) What is the probability that she has to make exactly 8 bets before stopping?
b) What is the probability that she has to make at least 9 bets?

2.6 Results of Unsolved Tasks
2.1. P (A) = 12

51 = 0, 23529

2.2. P (A) = 3
51 = 0, 05882

2.3. P (A) = 2
25 = 0, 00118

2.4. P (A) = 5
8 = 0, 625

2.5.

a) P (A) = 2
5 = 0, 4

b) P (A) = 5
8 = 0, 625

2.6. P (A) = 2/3 = 0, 6

2.7. P (A) = 1/3 = 0, 3

2.8. Since 3
4 · 1/2 6=

7
16 , the events are not independent.
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2.9. P (A) = 1
15 = 0, 06

2.10. P (A) = 4
663 = 0, 006

2.11. P (A) = 32
812175 = 3.94 · 10−4

2.12. P (A) = 0, 37

2.13. P (A) = (18
3 )

(20
5 ) = 0, 05263

2.14. P (A) = 253
7830 = 0, 03231

2.15. P (A) = 0, 82

2.16. P (A) = 2/3 = 0, 6

2.17.

a) P (A) = 0, 143
b) P (A) = 495

1430 = 0, 34615

2.18. P (A) = 0, 203

2.19. P (A) = 0, 73764

2.20.

a) P (A) = 23
42 = 0, 54762

b) P (A) = 9
23 = 0, 3913

2.21.

a) P (A) = 27
40 = 0, 675

b) P (A) = 5
9 = 0, 5

2.22. P (A) = 84
305 = 0, 27541

2.23. P (A) = 106

108 = 0, 01

2.24. P (A) = 1/3 = 0, 3

2.25. P (A) = 0, 165 = 0, 000104

2.26. P (A) =
(

5
2

)
· 0, 72 · 0, 33 = 0, 1323

2.27. P (A) =
(

10
6

)
· 0, 26 · 0, 84 = 5, 505 · 10−4

2.28. P (A) =
(

8
3

)
· 0, 33 · 0, 75 = 0, 25412
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2.29. P (A) =
(

100
25

)
· (1/6)25 · (5

6)75 = 0, 009825

2.30. P (A) = 9
13 = 0, 69231

2.31. P (A) = 1− 0, 94 = 0, 3439

2.32. P (A) = 0, 475

2.33. P (A) = 0, 45

2.34. P (A) = 28
38 = 0, 73684

2.35. P (A) = 24
43 = 0, 55814

2.36. P (A) = 3
101 = 0, 0297

2.37. P (A) = 20
47 = 0, 42553

2.38. P (A) = 1− (0, 9520 +
(

20
1

)
·0, 05 ·0, 9519 +

(
20
2

)
·0, 052 ·0, 9518 +

(
20
3

)
·0, 053 ·0, 9517) =

0, 0159

2.39.

a) P (A) = 0, 953 · 0, 05 = 0, 04287
b) P (A) = 0, 957 · 0, 05 = 0, 034917

2.40.

a) P (A) = 16
20 ·

15
19 ·

14
18 ·

4
17 = 0, 11558

b) P (A) = 18
20 ·

17
19 ·

2
18 = 0, 08947

2.41.

a) P (A) =
(

20
10

)
· 0, 210 · 0, 810 = 0, 00203

b) P (A) =
5∑

k=0

(
20
k

)
· 0, 2k · 0, 820−k = 0, 80421

c) P (A) = 1−
4∑

k=0

(
20
k

)
· 0, 2k · 0, 820−k = 0, 37035

2.42. P (A) =
(

4
2

)
· 0, 52 · 0, 52 = 0, 375

2.43.

a) P (A) =
(

10
5

)
· 0, 755 · 0, 255 = 0, 05839

b) P (A) =
4∑

k=0

(
10
k

)
· 0, 75k · 0, 2510−k = 0, 01973
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c) P (A) =
10∑
k=6

(
10
k

)
· 0, 75k · 0, 2510−k = 0, 92188

2.44.

a) P (A) = 1−
2∑

k=0

(
10
k

)
· (1/6)k · (5

6)10−k = 0, 22478

b) P (A) =
(

10
5

)
· (1/3)5 · (2/3)5 = 0, 13656

c) P (A) =
4∑

k=0

(
10
k

)
· (1/2)k · (1/2)10−k = 0, 37695

2.45. P (A) =
(

11
2

)
· 0, 22 · 0, 89 · 0, 2 = 0, 05906

2.46.

a) P (A) =
(

20
5

)
· 0, 15 · 0, 915 = 0, 031921

b) P (A) = 0, 920 = 0, 12157
c) P (A) = 0, 120 = 10−20

d) P (A) = 1−
3∑

k=0

(
20
k

)
· 0, 1k · 0, 910−k = 0, 13295

e) P (A) = 1−
4∑

k=0

(
20
k

)
· 0, 1k · 0, 910−k = 0, 04317

2.47.

a) P (A) = 0, 919 · 0, 1 = 0, 01351
b) P (A) = 0, 920 = 0, 12157
c) P (A) = 1− 0, 915 = 0, 79411

2.48. P (A) = 0, 35404

2.49. P (A) = 0, 53571

2.50.

a) P (A) = 0, 13614
b) P (A) = 0, 13632
c) P (A) = 0, 05954

2.51.

a) P (A) = 0, 13672
b) P (A) = 0, 63672



Chapter 3

Random Variable and Probability
Distributions

3.1 Random Variable
A probability distribution or, briefly, distribution, shows the probabilities of events in an
experiment. In probability theory and statistics, a random variable (or stochastic variable)
is a variable whose value is subject to variations due to chance (i.e. randomness, in a
mathematical sense). A random variable can take on a set of possible different values
(similarly to other mathematical variables), each with an associated probability, in contrast
to other mathematical variables.

A random variable’s possible values might represent the possible outcomes of a yet-to-
be-performed experiment, or the possible outcomes of a past experiment whose already-
existing value is uncertain (for example, as a result of incomplete information or imprecise
measurements). They may also conceptually represent either the results of an “objective”
random process (such as rolling a dice) or the “subjective” randomness that results from
incomplete knowledge of a quantity. The mathematical function describing the possible
values of a random variable and their associated probabilities is known as a probability
distribution.

In elementary probability theory a random variable we understand each mapping
X : γ → R, where γ is the set of elementary events of a probability space [γ, τ, P ].
For each E ∈ γ is X(E) some real number, called a value of a random variable X for the
event E.

Random variables will be denoted by capital letters X, Y , X1, X2, . . . and values of
random variables will be denoted by small letters x, y, x1, x2, . . . . We suppose that for
each a ∈ R we can determine the probabilities of types:

1. P (X = a), i. e., the probability that the value of the random variable X is equal to
the number a;

45
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2. P (X ≤ a), i. e., the probability that the value of the random variable X is not greater
than the number a;

3. P (X ∈ I), i. e., the probability that the value of the random variable X take values
from the interval I.

Random variables can be

1. discrete, that is, taking any of a specified finite or countable list of values,

2. continuous, taking any numerical value in an interval or collection of intervals.

3.2 Cumulative Distribution Function
Definition 3.1. Cumulative Distribution Function (or briefly Distribution Function) of
random variable X is the function defined for each x ∈ R as follows

F (x) = P (X ≤ x). (3.1)

Theorem 3.1 (Properties of the distribution function).

1. 0 ≤ F (x) ≤ 1 for each x ∈ R;

2. lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1;

3. F is non-decreasing function, i. e., if a < b then F (a) ≤ F (b);

4. F is right continuous on the entire set of real numbers;

5. if a < b, then P (X ∈ (a, b〉) = P (a < X ≤ b) = F (b)− F (a).

Discrete random variables and distributions

Definition 3.2. A random variable X has a distribution of discrete type if X takes on only
finitely many or at most countably many values x1, x2, x3, . . . called the possible values of
X, with probabilities pi = P (X = xi) whereas the probability P (X ∈ I) is zero for any
interval I containing no possible values.

Obviously, the discrete distribution is also determined by the probability function f(x)
of X, defined by

f(x) =
{
pj if x = xj,
0 otherwise. (3.2)

The set H(X) = {x1, x2, x3, . . . } is called a range of values of X.
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We can describe a random variable X by the table of the form

xi x1 x2 · · · xn . . .
P (X = xi) = pi p1 p2 · · · pn . . .

, (3.3)

which is called aprobability table of random variable X. It is easy to see, that for the
probabilities so-called normalization condition holds:

n(∞)∑
i=1

pi = 1. (3.4)

We get the values of distribution function F (x) by taking sums,

F (x) =
∑
xj≤x

f(xj) =
∑
xj≤x

pj. (3.5)

Continuous random variables and density function

Definition 3.3. A random variable X is called continuous, if there exists a non-negative
and on the set R integrable function f such that the following assertions hold:

F (x) =
x∫

−∞

f(t) dt, x ∈ (−∞, ∞), (3.6)

where F is the distribution function of variable X.
Function f satisfying (3.6) is called a probability density function of random variable

X.

Theorem 3.2 (Properties of probability density function). Let F be the distribution
function and let f be the density function .Then the folowing assertions hold:

1. if f(x) exists, then f(x) ≥ 0;

2. if there exists F ′(x), then F ′(x) = f(x), x ∈ R;

3. the normalization condition for the density function is
∞∫
−∞

f(x) dx = 1; (3.7)

4. for a < b we have

P (a ≤ X ≤ b) =
b∫
a

f(x) dx = F (b)− F (a), (3.8)

i. e., the probability that a random variable X takes values from 〈a, b〉 is equal to the
content of the area, which is bounded by the graph of the density over this interval
(see Figure 3.1).
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P (a ≤ X ≤ b)

a b

Figure 3.1: Example illustrating formula (3.8).

Remark 3.1. Additionally, for a continuous random variable is valid:

1. the density function of a random variable X is not determined uniquely;

2. the distribution function is continuous on R;

3. for each a ∈ R is P (X = a) = 0;

4. we can generalize the equality (3.8) as follows:

P (a < X < b) = P (a ≤ X < b) = P (a < X ≤ b) =

= P (a ≤ X ≤ b) =
b∫
a
f(x) dx.

(3.9)

3.3 Numerical Parameters of Random Variable
For each random variable we assign so-called numerical parameters, which will give us some
information on character of the studied random variable. In the following we will suppose
that the probability distribution of random variable X is given by the density function f ,
if X is continuous, and by the probability Table (3.4), if X is discrete.

Position Parameters

Definition 3.4. Let the law of the probability distribution of random variable X be given.
An expected value of random variable X is the number E(X) defined as follows

E(X) =



n(∞)∑
i=1

xi pi for discrete random variable,
∞∫
−∞

x f(x) dx for continuous random variable.
(3.10)

Theorem 3.3 (Properties of the expected value). Let X and Y be random variable
s and let a and b be constants. Then

1. the expected value of the constant random variable A taking value a is a, i. e.,
E(A) = a;
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2. E(a ·X + b · Y ) = a · E(X) + b · E(Y );

3. E(X − E(X)) = 0;

4. if the density graph of a continuous random variable X is symmetric with respect to
the line x = a then E(X) = a;

5. if Z = g(X) then

E(Z) = E(g(X)) =



n(∞)∑
i=1

g(xi) pi for discrete random variable,
∞∫
−∞

g(x)f(x) dx for continuous random variable.
(3.11)

Remark 3.2. Other position parameters are:

• the mode of a random variable X (we denoteMo(X)), which is defined for a discrete
random variable as the most probable value of X and for a continuous random
variable as any point at which the density function shall enter into a local maximum;

• the median of a random variable X (we denote Me(X)), which is defined as the
number for which P (X ≤Me(X)) ≥ 0,5 while P (X ≥Me(X)) ≥ 0,5.

Parameters of Variance

Definition 3.5. Let the law of the probability distribution of random variable X with the
expected value E(X) be given. The variance of random variable X is the number D(X)
defined as follows

D(X) =



n(∞)∑
i=1

(xi − E(X))2 pi for discrete random variable,
∞∫
−∞

(x− E(X))2 f(x) dx for continuous random variable.
(3.12)

Remark 3.3. For g(x) = (x− E(X))2 we get from (3.11) and (3.12)

D(X) = E[(X − E(X))2]. (3.13)

Theorem 3.4 (Properties of variance). Let X be a random variable and let a a b be
any constants. Then

1. the variance of the constant random variable A is D(A) = 0;

2. D(a ·X) = a2 ·D(X);
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3. D(a ·X + b) = a2 ·D(X);

4. D(X) can be expressed in the form

D(X) = E(X2)− [E(X)]2. (3.14)

Definition 3.6. Let there exists the variance D(X) of random variable X. The standard
deviation of random variable X is the number σ(X) defined as follows

σ(X) =
√
D(X). (3.15)

Definition 3.7. Random variable X is standard random variable if

E(X) = 0 and D(X) = 1. (3.16)

Theorem 3.5 (Standard random variable). Let X be a random variable with the
expected value E(X) and D(X) 6= 0. The random variable

Y = X − E(X)
σ(X) (3.17)

is standard random variable, i. e., E(Y ) = 0 and D(Y ) = 1.

3.4 Probability Distributions of Discrete Random Vari-
ables

3.4.1 Binomial distribution
The binomial distribution occurs in games of chance (rolling a dice, tossing a coin), quality
inspection (e.g. count of the number of defects), opinion polls (number of employees
favouring certain schedule changes, etc.), medicine (number of patients covered by a new
medication), and so on. The condition of its occurrence is as follows.

We are interested in the number of times an event A occurs in n independent trials. In
each trial the event A has the same probability of occurrence P (A) = p. Then in a trial,
A will not occur with probability q = 1− p. In n trials, the random variable that interests
us is

X = Number of times A occurs in n trials.
X can assume the values 0, 1, 2, . . . , n, and we want to determine the corresponding prob-
abilities. Now X = x means that A occurs in n trials and in n − x trials does not occur.
Let B = A be the complement of A, meaning that A does not occur. The probability
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that A occurs in first x trials and does not occur in the remaining n− x trials is px · qn−x
.Now, it is just one order of arranging x A’s and n − x B’s. The number of orders of
arranging x A’s and n− x B’s is the number of combinations of x-th class of n elements,
i. e.,

(
n
x

)
. Then the probability that A occurs in x trials and does not occur in n− x trials

is
(
n
x

)
· px · (1− p)n−x.

Definition 3.8. A random variable X has a binomial distribution with parameters n and
p if

1. its range of values is H(X) = {0, 1, 2, . . . , n};

2. P (X = x) =
(
n
x

)
· px · (1− p)n−x for each x ∈ {0, 1, . . . , n}.

We shall use the notation X ∼ bino(n; p).

Theorem 3.6. If X ∼ bino(n; p), then

E(X) = n · p, D(X) = n · p · q and σ(X) = √n · p · q. (3.18)

Moreover,
Mo(X) = k0 ∈ 〈np− q, np+ p〉. (3.19)

Proof. We prove that E(X) = n · p. We have

E(X) =
n∑
i=0

xi pi =
n∑
x=0

x,

(
n

x

)
· px qn−x =

=
n∑
x=1

n · (n− 1) · . . . · (n− x+ 1)
x · (x− 1) · . . . · 2 · 1 · px qn−x.

Using the substitution t = x− 1 and binomial theorem we get

E(X) = n p
n−1∑
t=0

x

(
n− 1
t

)
pt q(n−1)−t = n p (p+ q)n−1 = n · p. �

3.4.2 Hypergeometric Distribution
This probability distribution can be characterized by the model in which the set of M
objects is given, whereby K of them has a certain property and M − K does not have
this property. From this file are without returning randomly chosen N objects. We want
to calculate the probability that between selected objects just x objects have the property
under consideration.
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Definition 3.9. A random variable X has hypergeometric probability distribution with
parameters M, K and N if
1. range of values is H(X) = {max{0, K −M +N}, . . . ,min{K,N}};

2. P (X = x) =

(
K

x

)(
M −K
N − x

)
(
M

N

) for each x ∈ H(X).

We shall use the notation X ∼ hyge(M,K,N).

Theorem 3.7. If X ∼ hyge(M,K,N), then

E(X) = N · K
M

and D(X) = (M −N) ·N ·K
(M − 1) ·M

(
1− K

M

)
. (3.20)

3.4.3 Poisson distribution
The Poisson distribution is a discrete probability distribution of a random variable X that
has these characteristics:

• The experiment consists of counting the number of times x, and event occurs in a
given interval. The interval can be an interval of time, space, area, or volume.

• The probability of the event occurring is the same for each interval (of time, space,
area, or volume).

• The number of occurrences of the event in one interval is independent of the number
of occurrences in other intervals.

• The mean number of successes, denoted λ, is known over the interval. That is, λ is
the expected value over the given interval.

Definition 3.10. A random variable X has the Poisson distribution with parameter λ if
and only if

1. its range of values is H(X) = {0, 1, 2, . . . } = N ∪ {0};

2. the probability function is

f(x) = P (X = x) = λx · e−λ

x! for each x ∈ H(X). (3.21)

We denote X ∼ poiss(λ).
Poisson distribution is distribution with infinitely many possible values. We show that

the normalization condition is satisfied.
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We have ∑
pi =

∞∑
x=0

λx · e−λ

x! = e−λ ·
 ∞∑
x=0

λx

x!

 = e−λ · eλ = 1,

since ∑∞x=0
λx
x! is the Taylor expansion of function eλ.

Theorem 3.8. If X ∼ poiss(λ), then

E(X) = λ, D(X) = λ and σ(X) =
√
λ. (3.22)

Proof. We prove that E(X) = λ :

E(X) =
∞∑
i=0

xi pi =
∞∑
x=0

x · λ
x · e−λ

x! = e−λ ·
∞∑
x=1

x · λ · λx−1

x · (x− 1) · . . . · 2 · 1 .

We substitute x = t+ 1 and get

E(X) = λ e−λ
∞∑
t=0

λt

t! = λ e−λ · eλ = λ.

3.5 Probability Distributions of Continuous Random
Variables

3.5.1 Continuous Uniform Probability Distribution
Definition 3.11. A random variable X has the continuous uniform probability distribution
on the interval 〈a, b〉, if the density function f is determined by

f(x) =
{
h for x ∈ 〈a, b〉,
0 for x /∈ 〈a, b〉, (3.23)

for some h ∈ R. We denote this distribution function by X ∼ unif(a; b).

1
b−a = h

a b

Figure 3.2 Density function of uniform distribution.

The graph of the density function (3.23) is shown on Figure 3.2. It is easy to see that
0 < h = 1

b−a . We find formula for the distribution function F : from (3.6) we have

F (x) =
x∫

−∞

0 dt = 0 for x ∈ (−∞, a);
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F (x) =
a∫

−∞

0 dt+
x∫
a

1
b− a

dt = x− a
b− a

for x ∈ 〈a, b〉;

F (x) =
a∫

−∞

0 dt+
b∫
a

1
b− a

dt+
x∫
b

0 dt = 1 for x ∈ (b,∞).

The graph of the distribution function is shown on Figure 3.3.

1

a b

Figure 3.3 Distribution function of uniform distribution.

Continuous uniform probability distribution has a random variable that takes its values
only at specific intervals of finite lengths, and the probability that its value will occur in
any subintervals of that interval, is directly proportional to the length of the subinterval.
This fact tends to formulate the following: all the values of a random variable from a given
interval are equally likely.

Theorem 3.9. If X ∼ unif(a, b), then

E(X) = a+ b

2 , D(X) = (b− a)2

12 and σ(X) = b− a
2 ·
√

3
≈ 0,2887 · (b− a). (3.24)

3.5.2 Exponential Distribution
Definition 3.12. A random variable X has the exponential distribution with parameter λ
if the density function f is

f(x) =


1/λ e−x/λ for x ≥ 0,

0 for x < 0.
(3.25)

We denote the exponential distribution by X ∼ exp(λ).
The graph of (3.25) is shown on Figure 3.4. We prove the normalization condition (3.7):

∞∫
−∞

f(x) dx =
0∫

−∞

0 dx+
∞∫

0

1/λ · e−x/λ dx = 0 + 1
λ

[−e−x/λ
−1/λ

]∞
0

= 1,

because λ > 0.
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1
λ

0

Figure 3.4 Density function of exponential distribution.

It is easy to see that F (x) = 0 for x < 0, for x ≥ 0 we obtain

F (x) =
∫ x

0
1/λ · e−

t
λ dt =

[
− e− t

λ

]x
0

= 1− e−x/λ.

Hence the distribution function is

F (x) =
{

0 for x < 0,
1− e−x/λ for x ≥ 0.

(3.26)

The graph is shown on Figure 3.5.

1

0

Figure 3.5 Distribution function of exponential distribution.

Theorem 3.10. If X ∼ exp(λ), then

E(X) = λ, D(X) = λ2 and σ(X) = λ. (3.27)

Remark 3.4.

1. With the exponential probability distribution is closely related to the durability of
the issue, determining the warranty period for the product.

2. According to (3.27) is E(X) = λ > 0. Using (3.8) and (3.26) we get:
P (E(X) ≤ X) = P (λ ≤ X <∞) = lim

x→∞
F (x)−F (λ) = 0−(1−e−1) = e−1 ≈ 0,3679,

i. e., the probability that random variable with exponential distribution will not be
less than its mean value is always equal to the constant e−1.
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3.5.3 Normal Distribution
Definition 3.13. A random variable X has the normal (the Gauss) distribution with
parameters µ and σ > 0 if the density function f is determined by regulation

f(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 for each x ∈ R. (3.28)

We denote X ∼ norm(µ, σ) or X ∼ N(µ, σ).

0 µ

1
σ
√
2π

Figure 3.6 Density function of normal distribution.

The graph of the density function (3.28) is shown on Figure 3.6. It is easy to see that
f(x) ≥ 0, but the proof of the normalization condition (3.7)

∞∫
−∞

f(x) dx = 1
σ
√

2π
·
∞∫
−∞

e−
(x−µ)2

2σ2 dx = 1 for each µ ∈ R and σ > 0 (3.29)

is not trivial. The distribution function is

F (x) = P (X ≤ x) = 1
σ
√

2π

x∫
−∞

e−
(t−µ)2

2σ2 dt for each x ∈ R. (3.30)

The graph is shown on Figure 3.7.

0 µ

1
2

1

Figure 3.7 Distribution function of normal distribution.

Theorem 3.11. If X ∼ norm(µ, σ), then

E(X) = µ, D(X) = σ2 and σ(X) = σ. (3.31)
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By scaling of the random variable X ∼ norm(µ, σ) we get the random variable

Y = X − µ
σ

,

such that E(Y ) = 0 and D(Y ) = 1, so Y ∼ norm(0, 1). The density function ϕ of random
variable Y is given by

ϕ(y) = 1√
2π

e−
y2

2 for each y ∈ R (3.32)

and the distribution function Φ by

Φ(y) = 1√
2π

y∫
−∞

e−
u2

2 du for each y ∈ R. (3.33)

The function ϕ is even. That means that

Φ(−y) = 1− Φ(y) for each y ∈ R,
(
specially Φ(0) = 1

2

)
. (3.34)

Using the substitution u = t− µ/σ we can (3.30) write in the form

F (x) = 1√
2π

x−µ
σ∫

−∞

e−
u2

2 du = Φ
(
x− µ
σ

)
. (3.35)

Theorem 3.12. If X ∼ norm(µ, σ), then for each a < b we have
P (a < X ≤ b) = P (a ≤ X ≤ b) = P (a ≤ X < b) =

= P (a < X < b) = P
(
a−µ
σ
< X−µ

σ
< b−µ

σ

)
= Φ

(
b−µ
σ

)
− Φ

(
a−µ
σ

)
.

(3.36)

Theorem 3.13. If X ∼ norm(µ, σ), then for each ε > 0 holds

P (|X − µ| < ε) = P (µ− ε < X < µ+ ε) = 2 · Φ
(
ε

σ

)
− 1. (3.37)

Specially, for ε = 3σ we get
P (|X − µ| < 3σ) = P (µ− 3σ < X < µ+ 3σ) = 2 · Φ(3)− 1 ≈ 0,9973. (3.38)

Proof. Using the previous theorem for a = µ− ε and b = µ+ ε we have
P (µ− ε < X < µ+ ε) =

= Φ
(
µ+ ε− µ

σ

)
− Φ

(
µ− ε− µ

σ

)
= Φ

(
ε

σ

)
− Φ

(
− ε

σ

)
.

If we use (3.34) for y = ε/σ, we get

P (µ− ε < X < µ+ ε) = Φ
(
ε

σ

)
−

1− Φ
(
ε

σ

) = 2 · Φ
(
ε

σ

)
− 1,

what is (3.37). Inequality (3.38) is trivial.
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Remark 3.5. In practice, this property is usually formulated as so-called three sigma rule:
Almost all values of random variable X ∼ norm(µ, σ) (more precisely 99, 73 %) are in the
interval µ± 3σ.

Suppose that Y ∼ norm(0, 1) with distribution function (3.33). Let α ∈ (0, 1) be a
given real number. We are looking for kα > 0 such that

P (|Y | > kα) = α. (3.39)

kα−kα

ϕ(y)

α
2

α
2

0

1− α

Figure 3.8 The graphic significance of equality (3.39).

Using the complementary event we can write (3.39) in the form

P (−kα ≤ Y ≤ kα) = 1− α. (3.40)

Since Y is a continuous random variable, from (3.37) we get

P (−kα ≤ Y ≤ kα) = 2 · Φ(kα)− 1.

From the last two equalities we have 1−α = 2 ·Φ(kα)−1 and consequently Φ(kα) = 1− α
2 ,

which means that (see Figure 3.8)

kα = Φ−1
(

1− α

2

)
, (3.41)

where Φ−1 is inverse function of the distribution function (3.33). In mathematical statistics
is kα denoted as follows:

kα = y1−α2
. (3.42)

3.6 Solved Examples
Example 3.1. The target consists of circle K and two rings K1 and K2. Hit to circle
K is obtained with a probability of 0,7 and is rewarded 15 points, for rings K1, K2 are
probabilities pK1 = 0,2 and pK2 = 0,1, with reward 5 and −5 points, respectively. Let X be
a random variable which takes the value of the sum of points achieved in two independent
shots on target. We determine:

a) the law of the probability distribution of a random variable X;
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b) the expected value E(X);

c) the variance D(X);

d) P (X ≥ E(X)
2 ).

Solution:
a) It is easy to see thatX is a discrete random variable withH(X) = {−10, 0, 10, 20, 30}.

We calculate the probabilities of individual values: e.g. value 0 is obtained when we
achieve 5 points in the first shot and −5 points in the second shot, or in the reverse
order:

P (X = 0) = 0,2 · 0,1 + 0,1 · 0,2 = 0,04;

Value 10 isobtained, when we achieve 5 points in each shot or 15 points in the first
shot and −5 points in the second shot or −5 points in the first shot and 15 points in
the second shot. We get

P (X = 10) = 0,7 · 0,1 + 0,1 · 0,7 + 0,2 · 0,2 = 0,18.

In the same manner we obtain probabilities of other possible values. We obtain the
following probability table of random variable X:

xi −10 0 10 20 30
pi = P (X = xi) 0,01 0,04 0,18 0,28 0,49 . (3.43)

b) According to (3.10) we get

E(X) = (−10) · 0,01 + 0 · 0,04 + 10 · 0,18 + 20 · 0,28 + 30 · 0,49 = 22.

c) By (3.12) we obtain

D(X) = (−10− 22)2 · 0,01 + (0− 22)2 · 0,04 + (10− 22)2 · 0,18+

+(20− 22)2 · 0,28 + (30− 22)2 · 0,49 = 88.

d) From H(X) and part b) we have

P

(
X ≥ E(X)

2

)
= P (X ≥ 11) = P (X ∈ {20, 30}) =

= P (X = 20) + P (X = 30) = 0,28 + 0,49 = 0,77.
√
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Example 3.2. The student passes examinations at the ordinary term with probability
0,7 and event of failure, the probability of passing the test by him on the resit exam
increases still by 0,1. There are two resists. We determine formula and draw a graph of
the distribution function of a random variable that takes the value of completed terms on
student test.

Solution:

The student pass exam to the ordinary term with probability 0,7 so P (X = 1) = 0,7.
The student completes two terms, if student does not pass exam to the ordinary term, but
he pass term in the first resist which implies that P (X = 2) = 0, 3·0, 8 = 0,24. The student
will participate in three tests in the event that on the first two terms he was unsuccessful,
i. e., P (X = 3) = 0,3 · 0,2 = 0,06. We obtain the probability table of random variable X:

xi 1 2 3
pi 0,7 0,24 0,06 .

By (3.1), the distribution function of random variable X has formula:

F (x) =


0 for x < 1,
0,7 for 1 ≤ x < 2,
0,94 for 2 ≤ x < 3,
1 for 3 ≤ x.

1 2 30

0,7

0,94
1

Figure 3.9 Distribution function.
√

Example 3.3. Let the function f(x) =
{
ax−3 for x > 2,
0 for x ≤ 2 be given. We determine:

a) the number a ∈ R such that f(x) is the density function of some random variable X;

b) the expected value E(X);

c) P (1 ≤ X < E(X)).
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Solution:
a) We shall use (3.7):

1 =
∞∫
−∞

f(x) dx =
∞∫

2

a

x3 dx =
−a

2x2

∞
2

= a

8 ,

which implies a = 8.

b) By (3.10) and (3.12) we obtain:

E(X) =
∞∫
−∞

xf(x) dx =
∞∫

2

x · 8
x3 dx =

−8
x

∞
2

= 4.

c)

P (1 ≤ X < E(X)) =
4∫

1

f(x) dx =
4∫

2

8
x3 dx =

−4
x2

4

2

= 3
4 .

√

Example 3.4. Let us have the function F (x) =


a for x < 1,
bx+ cx2 for 1 ≤ x < 3,
d for 3 ≤ x,

where a, b, c, d are real constants. We determine:

a) the values of a, b, c, d, such that F can be a distribution function of some random
variable X;

b) the density function f of those random variable;

c) P (0 < X ≤ 2).

Solution:
a) For the distribution function holds

lim
x→−∞

F (x) = a and lim
x→∞

F (x) = d

and by Theorem 3.1 we get a = 0 and d = 1. Since F is not constant on interval 〈1, 3〉, X
is a continuous random variable. This implies that F is a continuous function on R, so F
has to be continuous at points 1 and 3. Since

lim
x→1−

F (x) = 0, lim
x→1+

F (x) = b+ c,
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0

1

1 3

Figure 3.10: The distribution function of X.

lim
x→3−

F (x) = 3b+ 9c, lim
x→3+

F (x) = 1,

we obtain the system of linear equations b+ c = 0, 3b+ 9c = 1. The solution is b = −1/6,
c = 1/6. We obtain

F (x) =


0 for x < 1,
(−x+ x2)/6 for 1 ≤ x < 3,
1 for 3 ≤ x,

which is the distribution function of some random variable X. The graph is shown on
Figure 3.10.
b) From Theorem 3.2 we obtain the density function f :

f(x) =


0 for x < 1,
(2x− 1)/6 for 1 ≤ x < 3,
0 for 3 ≤ x.

c) According to Remark 3.1 we have

P (0 < X ≤ 2) =
2∫

0

f(x) dx =
1∫

0

0 dx+
2∫

1

2x− 1
6 dx = 1

6

[
x2 − x

]2

1
= 1

3 .

We can obtain this result by (3.8), too:

P (0 < X ≤ 2) = F (2)− F (0) = −2 + 22

6 − 0 = 1
3 .

√

Example 3.5. Let

f(x) =


k · (x+ 1) for − 1 < x < 0,
k for 0 ≤ x < 2,
0 for x /∈ (−1, 2).

We determine:

a) constant k, such that f can be a density function of some random variable X;

b) the distribution function of random variable X;

c) P (X < 0).
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Solution:
a) Using (3.7) we get∫ −1

−∞
0 dx+

∫ 0

−1
k (x+ 1) dx+

∫ 2

0
k dx+

∫ ∞
2

0 dx = 1

k

2 + 2k = 1⇒ k = 0, 4.

We obtained

f(x) =


0,4 · (x+ 1) for− 1 < x < 0,
0,4 for 0 < x < 2,
0 for x /∈ (−1, 2).

b) From (3.6) we obtain:

• for x ≤ −1: F (x) =
x∫

−∞

0 dt = 0;

• for −1 < x ≤ 0: F (x) =
−1∫
−∞

0 dt+
x∫
−1

0,4 · (t+ 1) dt = 0,2 · (x+ 1)2;

• for 0 < x ≤ 2: F (x) =
−1∫
−∞

0 dt+
0∫
−1

0,4 · (t+ 1) dt+
x∫

0

0,4 dt = 0,4x+ 0, 2;

• for 2 ≤ x: F (x) =
−1∫
−∞

0 dt+
0∫
−1

0,4 · (t+ 1) dt+
2∫

0

0,4 dt+
x∫

2

0 dt = 1.

Hence

F (x) =


0 for x ≤ −1;
0,2 · (x+ 1)2 for −1 < x ≤ 0,
0,2 · (2x+ 1) for 0 < x ≤ 2,
1 for x > 2.

c) P (X < 0) =
∫ 0

−∞
f(x) · dx =

∫ 0

−1
0, 4 · (x+ 1) · dx = 0, 4 · [x

2

2 + x] 0
−1 = 0, 2.

√

Example 3.6. In the world series, there are two baseball teams - American League team
and National League team. The series ends when the winning team wins 4 games. We
assume that the teams are evenly matched. Determine the probability that the world series
will last

a) 4 games,

b) 5 or 6 games.
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Solution:
This is a very tricky application of the binomial distribution. For the purpose of this
analysis, we assume that the teams are evenly matched. Therefore, the probability that
a particular team wins a particular game is 0,5. We define a success as a win by the team
that ultimately becomes the world series champion.
a) This can occur if one team wins the first 4 games. The probability of the National
League team winning 4 games in a row is:

P (X = 4) =
(

4
4

)
0, 54 · 0, 50 = 0, 0625.

Similarly, when we compute the probability of the American League team winning 4
games in a row, we find that it is also 0,0625. Therefore, probability that the series ends
in four games would be 0,0625 + 0,0625 = 0,125; since the series would end if either the
American or National League team won 4 games in a row.

b) Now let’s tackle the question of finding probability that the world series ends in 5
games. The trick in finding this solution is to recognize that the series can only end in 5
games, if one team has won. So let’s first find the probability that the American League
team wins exactly 3 of the first 4 games.

P (X = 3) =
(

4
3

)
· 0, 53 · 0, 51 = 0, 25.

Given that the American League team has won 3 of the first 4 games, the American
League team has a 50% chance of winning the fifth game to end the series. Therefore, the
probability of the American League team winning the series in 5 games is 0, 25 · 0, 50 =
0, 125. Since the National League team could also win the series in 5 games, the probability
that the series ends in 5 games would be

P (A) = 0, 125 + 0, 125 = 0, 25.

The probability that the world series ends in 6 series would be solved in the same way.
The probability that American League team win in 6 series is

0, 5 · P5,0,5(3) = 0, 5 ·
(

5
3

)
· 0, 53 · 0, 52 = 0, 15625.

Since the National League team could also win the series in 6 games, the probability that
the series ends in 5 games would be

P (B) = 0, 15625 + 0, 15625 = 0, 3125.

Since the events A and B are disjoint the probability that the world series will last 5 or 6
games is

P (A ∪B) = 0, 25 + 0, 3125 = 0, 5625.
√
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Example 3.7. Suppose we select 5 cards from an ordinary deck of playing cards. What
is the probability of obtaining 2 orless of hearts?
Solution:
This is a hypergeometric experiment in which we know the following:
M = 52, since there are 52 cards in a deck,
k = 13, since there are 13 hearts in a deck,
N = 5, since we randomly select 5 cards from the deck,
x = 0 to 2, since our selection includes 0, 1, or 2 hearts.
We plug these values into the hypergeometric formula as follows:

P (X ≤ 2) = P (X = 0)+P (X = 1)+P (X = 2) =

(
13
0

)(
39
5

)
(

52
5

) +

(
13
1

)(
39
4

)
(

52
5

) +

(
13
2

)(
39
3

)
(

52
5

) = 0, 9072.

√

Example 3.8. Certain website is visited for the period for one hour in average by 30
guests. We determine:

a) the probability that during four minutes visit this page one guest;
b) the probability that during four minutes visit this page at least one guest;
c) the probability that during four minutes visit this page at least three, but less than

eleven guests;
d) the probability that during ten minutes visit this page at most five guests;
e) the probability that during ten minutes visit this page more than three guests.

Solution:
For tasks a) – c) we denote by X the random variable , which takes the value of the
number of visitors of website during four minutes. The expected value of X is E(X) =
λ1 = 4 · 30/60 = 2.
a) According to (3.21)we have

P (X = 1) = 21 · e−2

1! ≈ 0,2707.

b) We use the opposite event:

P (X ≥ 1) = 1− P (X = 0) = 1− 20 · e−2

0! ≈ 0,8647.

c) We have to compute P (3 ≤ X < 11) :

P (3 ≤ X < 11) =
10∑
x=3

P (X = x) =
10∑
x=3

2x · e−2

x! ≈ 0,3233.
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For tasks d)−e) we denote by Y the random variable , which takes the value of the number
of visits of website within ten minutes. The expected value of Y is E(Y ) = λ2 = 30

60 ·10 = 5.
d) We compute

P (Y ≤ 5) =
5∑
y=0

P (Y = y) =
5∑
y=0

5y · e−5

y! ≈ 0, 616.

e) We use the opposite event:

P (Y > 3) = 1− P (Y ≤ 3) = 1−
3∑
y=0

P (Y = y) = 1−
3∑
y=0

5y · e−5

y! ≈ 0, 735.

√

Example 3.9. The lifetime of the product has an exponential distribution with an ex-
pected value 200 hours. We determine:

a) the probability that the product is functional at least 300 hours;

b) the probability that the product will not be functional in excess of its average lifetime;

c) the maximum warranty period to be guaranteed if the manufacturer allows a maxi-
mum of 5% of complaints about the product.

Solution:
Let T be the random variable, which takes the value of the product lifetime. T has an
exponential distribution, so E(T ) = 200 = λ and X ∼ exp(200).
a) We are required to compute P (T ≥ 300). We obtain

P (T ≥ 300) = 1−P (T < 300) = 1−P (T ≤ 300) = 1−F (300) = 1−
(
1− e−1,5

)
≈ 0,2231.

b) The average lifetime of the product is actually the expected value of the random
variable T . We have

P (T ≤ E(T )) = P (T ≤ 200) = F (200) = 1− e−1 ≈ 0,6321.

c) It is necessary to determine such a maximum value z, that the inequality P (T ≤ z) ≤
0,05 is satisfied, so F (z) ≤ 0,05. We get

1− e
−
z

200 ≤ 0, 05⇒ e
−
z

200 ≥ 0, 95⇒ − z

200 ≥ ln 0, 95⇒ z ≤ −200 · ln 0, 95 ≈ 10, 2587.

The manufacturer would probably give warranty for 10 hours.
√

Example 3.10. Suppose that the amount of time one spends in a bank is exponentially
distributed with mean 10 minutes.
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• What is the probability that a customer will spend more than 15 minutes in the
bank?
• What is the probability that a customer will spend more than 15 minutes in the bank

given that he is still in the bank after 10 minutes?

Solution:
a) P (X > 15) = 1− P (X ≤ 15) = 1− F (15) = 1− (1− e−15/10) = e−1,5 = 0, 22.
b) We have to compute the conditional probability P (X > 15|X > 10). Since

P (X > 10) = 1− F (10) = 1− (1− e−10/10) = e−1,

we obtain

P (X > 15|X > 10) = P (X > 15 ∧X > 10)
P (X > 10) = P (X > 15)

P (X > 10) = e−1,5

e−1 = e−0,5 = 0, 606.
√

Example 3.11. 33 bulbs are connected in parallel into a circuit, and it is known that each
of them is defective with probability 0,1.

a) What is the probability that of these bulbs are more bulbs defective, than we could
on average expect?

b) What is the probability that of these bulbs are less bulbs defective than we can most
likely expect?

Solution:
a) Let X be a random variable, which takes the value of the number of defective bulbs.
Obviously X ∼ bino(33; 0, 1). On average, we can expect E(X) = n · p = 33 · 0,1 = 3,3
defective bulbs. We obtain

P (X > E(X)) = P (X > 3,3) = P (X ≥ 4) =

=
33∑
x=4

(
33
x

)
0,1x · 0,933−x ≈ 0,4231.

b) The number defective lamps that we can most likely expect is the modus of random
variable X. According to (3.19)we have

Mo(X) ∈ 〈33 · 0,1− 0,9; 33 · 0,1 + 0,1〉 = 〈2,4 ; 3,4〉,

and thereforeMo(X) = 3. We have

P (X <Mo(X)) = P (X < 3) = P (X ≤ 2) =
2∑

x=0

(
33
x

)
0,1x0,933−x ≈ 0,3457.

√
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Example 3.12. The mass of produced weights has a normal probability distribution with
mean values of 10 grams. The manufacturer provides a standard deviation of 0,02 g. We
determine the probability that randomly bought weights will have a real mass

a) greater than 10,03 g;

b) less than 9,99 g;

c) at least 10 g but not more than 10,05 g.

Solution:
LetX be a random variable, which takes the value of real mass of bought weights. Obviously
X ∼ norm(10, 0, 02).
a) We want to determine P (X > 10,03). We get

P (X > 10,03) = 1− P (X ≤ 10,03) = 1− F (10,03) =

= 1− Φ
(10,03− 10

0,02

)
= 1− Φ(1,5) ≈ 1− 0,9332 = 0,0668.

b) We are required to compute P (X < 9,99). We have

P (X < 9,99) = P (X ≤ 9,99) = F (9,99) = Φ
(9,99− 10

0,02

)
= Φ(−0,5) = 1−Φ(0,5) ≈ 0,3085.

c) According to (3.36) we have

P (10 ≤ X ≤ 10,05) = Φ
(10,05− 10

0,02

)
− Φ

(10− 10
0,02

)
=

= Φ(2,5)− Φ(0) ≈ 0,4938.
√

Example 3.13. Measuring with a voltmeter is loaded with 5 Volts systematic error and
random errors have a normal probability distribution with a standard deviation of 2 Volts.
We perform one measurement. What is the probability that the error of the measured
values will differ by 1 volt from

a) mean value of the expected error,

b) actual measured values?

c) What may be with probability 0,99 the maximum deviation of the measurement error
from its mean value?
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Solution:
Let X be the random variable, which takes the value of the error in one measurement by
the voltmeter. The systematic error is in fact the average error, i. e., µ = 5. Since σ = 2
then X ∼ norm(5, 2).
a) We compute P (|X − 5| < 1). From (3.37) we get for ε = 1 :

P (|X − 5| < 1) = 2 · Φ
(1

2

)
− 1 ≈ 0,3829.

b) We want to determine P (|X| < 1). We have

P (|X| < 1) = P (−1 < X < 1) = F (1)− F (−1) ≈ 0,0215.

where F (1) = normcdf(1, 5, 2) ≈ 0,0228 and F (−1) = normcdf(−1, 5, 2) ≈ 0,0013.
c) We want to determine the value ε, such that P (|X − µ| < ε) = 0,99. From (3.37) we
obtain

P (|X − µ| < ε) = P (|X − 5| < ε) = 2 · Φ
(
ε

2

)
− 1 = 0,99.

Hence
Φ
(
ε

2

)
= 0,995 which means that ε = 2 · Φ−1(0,995) ≈ 5,1517.

√

3.7 Unsolved Tasks
3.1. Let

f(x) =
{
k · (3x− x2) for 0 < x < 3,
0 for x /∈ (0, 3).

Determine:

a) constant k, such that f can be a density function of some random variable X;

b) the distribution function of random variable X;

c) P (X < 0);

d) E(X) and D(X).

3.2. Let
f(x) =

{
k/x4 for x ≥ 1,
0 for x < 1.

Determine:

a) constant k such that f can be a density function of some random variable X;



CHAPTER 3. RANDOM VARIABLE AND PROBABILITY DISTRIBUTIONS 70

b) the distribution function of random variable X;

c) E(X) and D(X);

d) P ( 3
√

2 < X < D(X)).

3.3. Let
f(x) =

{
k · cos 2x for x ∈ (0, π4 〉,
0 for x /∈ (0, π4 〉.

Determine:

a) constant k such that f can be a density function of some random variable X;

b) the distribution function of random variable X;

c) E(X) and D(X);

d) P (−3 < X < π
12).

3.4. Let us have the function F (x) =


0 for x ≤ 3,
ax+ b for 3 < x ≤ 6,
c for x > 6.

, where a, b, c are real

constants. Determine:

a) the values of a, b, c such that F can be a distribution function of some random
variable X;

b) the density function f of those random variable;

c) E(X) and D(X);

d) P (4 < X ≤ 5) and P (−0, 5 < X ≤ 5).

3.5. Let us have the function F (x) =


0 for x ≤ −5,
a · (x+ b) for − 5 < x ≤ 2,
1 for x > 2,

where a, b are real constants. Determine:

a) the values of a, b such that F can be a distribution function of some random variable
X;

b) the density function f of those random variable ;

c) P (−2 < X ≤ 2) and P (−6 < X ≤ 1).
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3.6. Let us have the function F (x) =


0 for x ≤ 0,
a · (x2 − x4/4) for 0 < x ≤

√
2,

b for x >
√

2,
where a, b are real constants. Determine:

a) the values of a, b such that F can be a distribution function of some random variable
X;

b) the density function f of those random variable ;

c) E(X) and D(X).

3.7. Let us have the function F (x) =


c for x ≤ 0,
a+ b · sin x for 0 < x ≤ π

2 ,
d for x > π

2 .
,

where a, b, c, d are real constants. Determine:

a) the values of a, b, c, d such that F can be a distribution function of some random
variable X;

b) the density function f of those random variable;

c) E(X) and D(X);

d) P (0 < X ≤ π
4 ) and P (0 < X ≤ π

2 ).

3.8. Let us have the function F (x) =
{
d for x ≤ 0,
a+ b · e−x for x > 0,

where a, b are real constants. Determine:

a) the values of a, b such that F can be a distribution function of some random variable
X;

b) the density function f of those random variable;

c) P (1 < X ≤ 4), P (X ≥ 2) and P (0 < X ≤ 3);

d) E(X) and D(X).

3.9. Let us have the function
F (x) = a+ b · arctg x

for x ∈ (−∞,∞), where a, b are real constants. Determine:

a) the values of a, b such that F can be a distribution function of some random variable
X;

b) the density function f of those random variable;
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c) P ( 1√
3 < X ≤ 1) and P (−1 < X ≤

√
3);

d) E(X) and D(X).

3.10. Which of the following random variables are discrete and which are continuous?

a) The number of students in a section of a statistics course.

b) The air pressure in an car tire.

c) The number of osprey chicks living in a nest.

d) The height of students at TUKE.

e) The speed of randomly selected vehicles on a highway.

f) The time it takes a student to register for spring semester.

3.11. The number of industrial accidents at a particular plant is found to average 3 per
month. Find the probability that

a) exactly 6 accidents will occur at any given month,

b) at least 2 accidents will occur at any given month,

c) at most 7 accidents will occur at any given month.

3.12. One survey showed that 59% of Internet users are somewhat concerned about the
privacy of their e-mail. Based on this information, what is the probability that for a
random sample of 10 Internet users, 6 are concerned about their e-mail privacy?

3.13. For a certain section of a pine forest, the number of diseased trees per acre X follows
the Poisson distribution with λ = 10. Find the probability that a randomly selected acre
from this forest will contain

a) at least 12 diseased trees,

b) at most 8 diseased trees,

c) more than 7 but less than 12 diseased trees.

3.14. Suppose that 65% of survey questionnaires sent to all faculty are completed and
returned. If ten faculty members are chosen at random, compute the probability that

a) exactly 6 will be completed and returned,

b) less than 3 will be completed and returned,
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c) more than 5 but less than 9 will be completed and returned.

3.15. A biologist studying a hybrid tomato found that there is a probability of 0,70 that
the seeds will germinate. If the biologist plants 10 seeds, compute the probability that:

a) exactly 8 seeds will germinate,

b) at most 7 seeds will germinate,

c) at least 8 seeds will germinate,

d) between 3 and 7 seeds (inclusive, including 3 an 7) will germinate,

e) between 4 and 9 seeds (exclusive) will germinate,

f) less than 5 seeds will germinate,

g) more than 3 seeds will germinate?

3.16. The playing life of a Sunshine radio is exponentially distributed with a mean of 600
hours. Find the probability that a randomly selected radio will last

a) less than 800 hours,

b) greater than 500 hours,

c) between 600 and 700 hours.

3.17. A factory has a machine that puts corn flakes in boxes that are advertised as 200
grams each. If the distribution of weights is normal with µ = 200 and σ = 15, what is the
probability that the weight of a randomly selected box of corn flakes will be

a) less than 195 grams,

b) greater than 190 grams,

c) between 180 and 210 grams.

3.18. Suppose you eat lunch at a restaurant that does not take reservations. Let X,
representing the mean time waiting to be seated, has a normal distribution. It is known
that the mean waiting time is 18 minutes with a standard deviation of 4 minutes. What
is the probability that the waiting time will exceed 20 minutes given that it has exceeded
15 minutes?
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3.19. Magic Video Games Inc. sells expensive computer games and wants to advertise an
impressive, full-refund warranty period. It has found that the mean life for its computer
games is 30 months with a standard deviation of 4 months. If the life spans of the computer
games are normally distributed, how long of a warranty period (to the nearest month) can
be offered so that the company will not have to refund the price of more than 7% of the
computer games?

3.20. On average boat fishermen on Pyramid Lake catch 2 fish per 3 hour. Suppose you
decide to fish the lake on a boat for 7 hours. In the 7-hour period of time what is the
probability that you will catch

a) 4 fishes,

b) at least 3 fishes,

c) between 3 and 6 fishes (inclusive)?

3.21. A loom which produces plaid wool fabric is known to produce, on the average, one
noticeable flaw per 20 meters of fabric.

a) What is the probability that there will be no flaws in a fifty-meters piece of the wool
fabric?

b) What is the probability that there will be more than 3 flaws in a 30-meters piece of
fabric?

c) What is the probability that there will be less than 5 flaws in a 100-meters piece of
fabric?

3.22. The length of time a randomly chosen 9-year old child spends playing video games
per day is approximately exponentially distributed with a mean equal to 2 hours.

a) What is the probability that a randomly chosen 9-year old child will play video games
at most 3 hours.

b) What is the probability that a randomly chosen 9-year old child will play video games
at least 4 hours.

c) What is the probability that a randomly chosen 9-year old child will play video games
between 1,5 hours and 3 hours.

d) 70% of 9-year old children will play video games per day for at most how long?

d) 60% of 9-year old children will play video games per day for at least how long?
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3.23. Research has shown that studying improves a student’s chances to 80% of selecting
the correct answer to a multiple choice question. A multiple choice test has 15 questions.
Each question has 4 choices.

a) What is the probability that a student who studied answers at least 10 questions
correctly?

b) Suppose that a student does not study for the test but randomly guesses the answers.
What is the probability that the student will answer 7 or 8 questions correctly?

3.24. When a customer calls the“Help Line” at ABC Computer Software Co., the amount
of time that a customer must wait “on hold” until somebody answers the line and helps
the customer follows an exponential distribution with mean of 7,5 minutes.

a) What is the probability that a customer waits more than 10 minutes to receive help?

b) What is the probability that a customer waits less than 8 minutes to receive help?

c) 60% of customers waits for at least how long to receive help?

d) 90% of customers waits for at most how long to receive help?

3.25. ABC Delivery Service offers next day delivery of packages weighing between 2 and
20 pounds in a certain city. They have found that the weights of the packages they deliver
are uniformly distributed between 2 and 20 pounds.

a) What is the probability that a package weighs between 10 and 15 pounds?

b) Given that a package weighs less than 10 pounds, what is the probability that it
weighs less than 5 pounds?

c) 35% of packages weigh less than how many pounds?

d) 50% of packages weigh more than how many pounds?

3.26. A wholesale warehouse supplies 25 shops. From each of them can independently
from other shops to come during the day the order with probability 0,45. Determine:

a) the expected value of the number of orders per day;

b) the most probable number of orders per day, and the probability that this number
of orders will come;

c) the probability that during the day, at least 10 orders will come;

d) the probability that during the day, at least five, but at most 15 orders will come.
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3.27. Chance of hitting the atomic nucleus in accelerator in one experiment is 0,001.

a) What is the probability that in the 5000 trials will hit the atomic nucleus of more
than five times and less than ten times?

b) Calculate the expected value, standard deviation and dispersion of nucleus hits.

3.28. Within one hour, on average 90 customers arrive at the fuel pump. Determine the
probability that

a) within 4 minutes will come exactly two customers;

b) within 4 minutes will come at most two customers;

c) within 4 minutes will come at least one customer.

d) What is the smallest number of customers will be within 4 minutes not exceeded
with a probability of at least 0,99?

3.29. Of the set of 80 products, between which there are 12 defective, a quality control
randomly selects eight products. Determine the probability that between between the
controlled products are

a) five defective products;

b) at least one defective product;

c) less than five defective products.

d) What number of defective products is the most probable?

e) What is the average number of selected defective products?

3.30. Passengers can come to the tram stop at any moment. Determine:

a) length of the interval between successive connections, if the probability that passen-
gers will have to wait at least 4 minutes is 0,6;

b) determine the expected value and standard deviation of the waiting time for a con-
nection;

c) the regulation of the distribution function of the random variable that takes the value
of time waiting for connection.
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3.8 Results of Unsolved Tasks
3.1.

a) k = 2/9;

b) F (x) =


0 for x ≤ 0,
x2/3− 2x3/27 for x ∈ (0; 3〉,
1 for x > 3.

c) E(X) = 1, 5, D(X) = 0, 45, σ(X) = 0, 6708;

d) P (1 ≤ X < 2) = 13/27.

3.2.

a) k = 3;

b) F (x) =
{

0 for x < 1,
1− 1/x3 for x ≥ 1.

c) E(X) = 1, 5 and D(X) = 0, 75;

d) P ( 3
√

2 ≤ X < E(X)) = 11/54.

3.3.

a) k = 2;

b) F (x) =


0 for x ≤ 0,
sin 2x for x ∈ (0, π/4〉,
1 for x > π/4.

c) E(X) = π/4− 1/2 and D(X) = 0, 0354;

d) P (−3 < X < π/12) = 0, 5.

3.4.

a) a = 1/3, b = −1, c = 1;

b) f(x) =
{

1/3 for x ∈ (3, 6〉,
0 otherwise.

c) E(X) = 4, 5 and D(X) = 0, 75;
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d) P (4 < X ≤ 5) = 1/3 and P (−0, 5 < X ≤ 5) = 2/3

3.5.

a) a = 1/7, b = 5;

b) f(x) =
{

1/7 for x ∈ (−5, 2〉,
0 otherwise.

c) P (−2 < X ≤ 2) = 4/7, P (−6 < X ≤ 1) = 6/7.

3.6.

a) a = 1, b = 1;

b) f(x) =
{

2x− x3 for x ∈ (0,
√

2〉,
0 otherwise.

c) E(X) = 8
√

2/15, D(X) = 22/225.

3.7.

a) a = 0, b = 1, c = 0, d = 1;

b) f(x) =
{

cosx for x ∈ 〈0, π/2〉,
0 otherwise.

c) E(X) = 0, 5708, D(X) = 0, 1416;

d) P (0 < X < π/4) = 0, 7071, P (0 ≤ X < π/2) = 1.

3.8.

a) a = 1, b = −1, d = 0;

b) f(x) =
{

e−x for x ∈ (0,∞),
0 otherwise.

c) P (1 < X ≤ 4) = 1/e− 1/e4, P (X ≥ 2) = 1/e2, P (0 < X ≤ 3) = 1− 1/e3;

d) E(X) = 1 and D(X) = 1.

3.9.
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a) a = 1/2, b = 1/π;

b) f(x) =
1

π(1 + x2) for x ∈ (−∞,∞).

c) P (1/
√

3 < X < 1) = 1/12, P (−1 < X <
√

3) = 7/12;

d) E(X) and D(X) do not exist.

3.10.

a) discrete;

b) continuous;

c) discrete;

d) continuous;

e) continuous;

f) continuous.

3.11. X ∼ poiss(3)

a) P (X = 3) = 36 · e−3

6! = 0, 0504;

b) P (X ≥ 2) = 1−
1∑

x=0

3x · e−3

x! = 0, 8006;

c) P (X ≤ 4) =
4∑

x=0

3x · e−3

x! = 0, 8153.

3.12. X ∼ bino(10; 0, 59), P (X = 6) =
(

10
6

)
· 0, 596 · 0, 414 = 0, 2506

3.13. X ∼ poiss(10)

a) P (X ≥ 12) = 1−
10∑
x=0

10x · e−10

x! = 0, 3032;

b) P (X ≤ 8) =
8∑

x=0

10x · e−10

x! = 0, 3328;

c) P (7 < X < 12) =
11∑
x=8

10x · e−10

x! = 0, 2377.



CHAPTER 3. RANDOM VARIABLE AND PROBABILITY DISTRIBUTIONS 80

3.14. X ∼ bino(10; 0, 65)

a) P (X = 6) =
(

10
6

)
· 0, 656 · 0, 354 = 0, 2377;

b) P (X < 3) =
2∑

x=0

(
10
x

)
· 0, 65x · 0, 3510−x = 0, 0048;

c) P (5 < X < 9) =
8∑

x=6

(
10
x

)
· 0, 65x · 0, 3510−x = 0, 6655.

3.15. X ∼ bino(10; 0, 7)

a) P (X = 8) =
(

10
8

)
· 0, 78 · 0, 32 = 0, 2355;

b) P (X ≤ 7) =
7∑

x=0

(
10
x

)
· 0, 7x · 0, 310−x = 0, 6172;

c) P (X ≥ 8) =
10∑
x=8

(
10
x

)
· 0, 7x · 0, 310−x = 0, 3828;

d) P (3 ≤ X ≤ 7) =
7∑

x=3

(
10
x

)
· 0, 7x · 0, 310−x = 0, 6156;

e) P (4 < X < 9) =
8∑

x=5

(
10
x

)
· 0, 7x · 0, 310−x = 0, 8034;

f) P (X < 5) =
4∑

x=0

(
10
x

)
· 0, 7x · 0, 310−x = 0, 0473;

g) P (X > 3) =
10∑
x=4

(
10
x

)
· 0, 7x · 0, 310−x = 0, 9894.

3.16. X ∼ exp(600)

a) P (X < 800) = 1− e−800/600 = 0, 7364;

b) P (X > 500) = e−500/600 = 0, 2081;

c) P (600 < X < 700) = e−600/600 − e−700/600 = 0, 0565.

3.17. X ∼ norm(200; 15)

a) P (X < 195) = 1− Φ(0, 333) = 0, 36943;

b) P (X > 190) = Φ(0, 667) = 0, 74961;

c) P (180 < X < 210) = Φ(0, 667) + Φ(1, 333)− 1 = 0, 65635.
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3.18. X ∼ norm(18; 4), P (X > 20|X > 15) = 1− Φ(0, 5)
Φ(0, 75) = 0, 39895.

3.19. X ∼ norm(30; 4)

P (X < t) = 0, 07⇒ t = 30− 4 · Φ−1(0, 93) = 24, 097. The company would probably
give warranty for 24 months.

3.20. X ∼ poiss(14/3)

a) P (X = 4) = (14/3)4 · e−14/3

4! = 0, 1858;

b) P (X ≥ 3) = 1−
2∑

x=0

(14/3)x · e−14/3

x! = 0, 8443;

c) P (3 ≤ X ≤ 6) =
6∑

x=3

(14/3)x · e−14/3

x! = 0, 6534.

3.21. X ∼ poiss(λ)

a) λ = 2, 5; P (X = 0) = e−2,5 = 0, 0821;

b) λ = 1, 5; P (X > 3) = 1−
3∑

x=0

1, 5x · e−1,5

x! = 0, 0656;

c) λ = 5; P (X < 5) =
4∑

x=0

5x · e−5

x! = 0, 4405.

3.22. X ∼ exp(2)

a) P (X ≤ 3) = 1− e−3/2 = 0, 7769;

b) P (X > 4) = e−4/2 = 0, 1353;

c) P (1, 5 < X < 3) = e−1,5/2 − e−3/2 = 0, 2492;

d) P (X < t) = 0, 7⇒ t = −2 · ln 0, 3 = 2, 4079;

e) P (X > t) = 0, 6⇒ t = −2 · ln 0, 6 = 1, 0217.

3.23. X ∼ bino(10; p)

a) p = 0, 8; P (X = 10) =
(

15
10

)
· 0, 810 · 0, 25 = 0, 9389;

b) p = 0, 25; P (7 ≤ X ≤ 8) =
(

15
7

)
· 0, 257 · 0, 758 +

(
15
8

)
· 0, 258 · 0, 757 = 0, 0524.
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3.24. X ∼ exp(7, 5)

a) P (X > 10) = e−10/7,5 = 0, 2636;

b) P (X < 8) = 1− e−8/7,5 = 0, 6558;

c) P (X > t) = 0, 6⇒ t = −7, 5 · ln 0, 6 = 3, 8312;

d) P (X < t) = 0, 9⇒ t = −7, 5 · ln 0, 1 = 17, 269.

3.25. X ∼ unif(2; 20)

a) P (10 < X < 15) = 5/18;

b) P (X < 5|X < 10) = P (X<5)
P (X<10) = 3/18

8/18 = 3/8;

c) P (X < m) = 0, 35⇒ m = 8, 3;

d) P (X > m) = 0, 5⇒ m = 11.

3.26. X ∼ bino(25; 0, 45)

a) E(X) = 11,25

b) Mo(X) = 11, P (X =Mo(X)) = 0, 1583;

c) P (X ≥ 10) = 0, 7576;

d) P (5 ≤ X ≤ 15) = 0, 9537.

3.27. X ∼ bino(5000; 0, 001)

a) P (5 < X < 10) = 0,3523;

b) E(X) = 5, D(X) = 4, 9950 and σ(X) = 2, 2349.

3.28. X ∼ poiss(6)

a) P (X = 2) = 0, 0446;

a) P (X ≤ 2) = 0, 0620;

a) P (X ≥ 2) = 0, 9826;

d) P (X < t) = 0, 99⇒ t = 12.

3.29. X ∼ hyge(80, 12, 8)

a) P (X = 5) = 0, 0014;
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b) P (X ≥ 1) = 0, 7450;

c) P (X < 5) = 0, 9999;

d) Mo(X) = 1;

e) E(X) = 1, 2.

3.30. X ∼ unif(0, b)

a) P (X ≥ 4) = 0, 6⇒ 4/b = 0, 4⇒ b = 10

b) E(X) = 5 and σ(X) = 2, 8868;

c) F (x) =


0 for x ≤ 0,
x
10 for x ∈ (0; 10),
1 for x ≥ 10.





Chapter 4

Mathematical Statistics

4.1 Introduction to Inferential Statistics
Mathematical statistics consists of methods for designing and evaluating random experi-
ments to obtain information about practical problems, such as a quality of raw material
or manufactured products, the efficiency of air-conditioning systems, the performance of
certain cars, the efect of advertising, consumer reactions to a new product, etc.

Inferential statistics is generalizing from samples to populations using probabilities.
Performing hypothesis testing, determining relationships between variables, and making
predictions.

The process of checking models is called statistical inference. In this process we draw
random samples (briefly called samples). These are sets of data values from a much larger
set of data values that could be studied, called the population. The population could be
hypothetical, consisting of an infinite sequence of outcomes of trials. Such an inference from
samples to a population holds true, not absolutely, but with some high probability.

Methods of statistical inference are based on drawing samples. Most important are
estimation of parameters and hypothesis testing with application to quality control and
acceptance sampling. Further, regression and correlation analysis, with concern to experi-
ments involving two variables.

4.2 Random Sampling
Definition 4.1 (Random Sampling). Let F be the distribution function. Random sam-
pling of size n is called ordered n-tuple (X1, X2, . . . , Xn) of random variables with the
following properties:

(1) X1, X2, . . . , Xn are independent,

(2) X1, X2, . . . , Xn have a distribution function F .

85
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An ordered n-tuple

(x1, x2, . . . , xn) = (X1(ω), X2(ω), . . . , Xn(ω))

is called the realization of random sample (i. e. specific measured values).
We need to know the distribution of random variables which are functions of random

sample and are independent of the parameters of the population. Such functions will be
called sample characteristics. The most common sample characteristics are:
Sample mean:

x̄ = 1
n
·
n∑
i=1

xi. (4.1)

Sample variation:

s2
n−1 = 1

n− 1 ·
n∑
i=1

(xi − x̄)2. (4.2)

Sample standard deviation:

sn−1 =
√√√√ 1
n− 1 ·

n∑
i=1

(xi − x̄)2. (4.3)

Sample skewness:

γ3 =
1
n
·
n∑
i=1

(xi − x̄)3√(
1
n
·
n∑
i=1

(xi − x̄)2
)3
. (4.4)

Sample kurtosis:

γ4 =
1
n
·
n∑
i=1

(xi − x̄)4

(
1
n
·
n∑
i=1

(xi − x̄)2
)2 − 3. (4.5)

Theorem 4.1. Let (X1, X2, . . . , Xn) be a random sample from a normal distribution
N(µ, σ2). Then the random variable X̄ has a normal distribution and holds:

E(X̄) = µ, D(X̄) = σ2

n
.

Theorem 4.2. Let (X1, X2, . . . , Xn) be a random sample from a normal distribution
N(µ, σ2). Then holds:

E(σ2) = σ2, D(σ2) = 2 · σ4

n− 1 .
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Theorem 4.3. Let (X1, X2, . . . , Xn) be a random sample from a normal distribution
N(µ, σ2). Then holds:

E(γ3) = 0, D(γ3) = 6(n− 2)
(n+ 1)(n+ 3) .

Theorem 4.4. Let (X1, X2, . . . , Xn) be a random sample from a normal distribution
N(µ, σ2). Then holds:

E(γ4) = − 6
n+ 1 , D(γ4) = 24n(n− 2)(n− 3)

(n+ 1)2(n+ 3)(n+ 5) .

4.3 Estimation of Parameters
A point estimate of a parameter is a number (point on the real line), which is computed
from a given sample and serves as an approximation of the unknown exact value of the
parameter. An interval estimate is an interval (confidence interval) obtained from a sample.
Estimation of parameters is of great practical importance in many applications.

As an approximation of the mean µ of a population we may take the mean x̄ of a
corresponding sample. This gives the estimate µ̂ = x̄ for µ, that is:

µ̂ = x̄ = 1
n
·
n∑
i=1

xi, (4.6)

where n is the sample size.
Similarly, an estimate σ̂2 for the variance of a population is the variance s2 of a corre-

sponding sample, that is:

σ̂2 = s2 = 1
n
·
n−1∑
i=1

(xi − x̄)2. (4.7)

Clearly, (4.6) and (4.7) are estimates of parameters for distributions in which µ or σ2

appear explicitly as parameters, such as the normal or the Poisson distribution. For the
binomial distribution, p = µ

n
. From (4.6) we obtain for p the estimate:

p̂ = x̄

n
. (4.8)

Definition 4.2. Let n be the size of the random sample. The sample characteristic Yn is
called sample estimate of parameter θ. The sample estimate is called:

– consistent estimator, if for each ε > 0 holds

lim
n→∞

P (|Yn − θ| < ε) = 1,
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– unbiased estimator, if for each n holds

E(Yn) = θ,

– asymptotically unbiased estimator, if holds

lim
n→∞

E(Yn) = θ.

4.3.1 Maximum Likelihood Method
Another method for obtaining estimates is the so-called maximum likelihood method. To
explain it, we consider a discrete (or continuous) random variable X whose probability
function (or density) f(x) depends a single parameter θ. We take a corresponding sample
of n independent values x1, x2, . . . , xn. Then in the discrete case the probability that a
sample of size n consists precisely of those n values is

L(x1, . . . , xn, θ) = f(x1) · f(x2) · f(x3) · · · · · f(xn) =
n∏
i=1

f(xi). (4.9)

In the continuous case the probability that the sample consists of value in the small intervals
xj 5 x 5 xj + ∆x, for j = 1, 2, 3, . . . , n is

L(x1, . . . , xn, θ) = f(x1) ·∆x ·f(x2) ·∆x ·f(x3)∆x · · · f(xn) ·∆x =
n∏
i=1

(f(xi) ·∆x). (4.10)

Since f(xj) depends on θ, the function L depends on x1, x2, x3, . . . , xn to be given and
fixed. Then L(x1, . . . , xn, θ) is a function of θ, which is called the likelihood function.

The basic idea of the maximum likelihood method is very simple, as follows. We
choose approximation of the unknown value of θ for which L is as large as possible. If
L(x1, . . . , xn, θ) is differentiable function of θ, a necessary condition for L to have a maxi-
mum in an interval (not at the boundary) is1

∂L(x1, . . . , xn, θ)
∂θ

= 0. (4.11)

A solution of (4.11) depending on x1, x2, . . . , xn is called a maximum likelihood estimate
for parameter θ. We may replace (4.11) by

∂ lnL(x1, . . . , xn, θ)
∂θ

= 0, (4.12)

because f(xi) > 0 for i = 1, 2, . . . , n, maximum of L is in general positive and lnL is a
monotone increasing function of L. This often simplifies calculations.

1We write a partial derivative in equation (4.11), because function L depends also on x1, x2, . . . , xn.
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Severals parameters: If the distribution of random variable X involves r parameters
θ1, θ2, . . . , θr, then instead of (4.11) we have an r conditions

∂L(x1, . . . , xn, θ1, θ2, . . . , θr)
∂θ1

= 0, · · · , ∂L(x1, . . . , xn, θ1, θ2, . . . , θr)
∂θr

= 0 (4.13)

and instead of (4.12) we have

∂ lnL(x1, . . . , xn, θ1, θ2, . . . , θr)
∂θ1

= 0, · · · , ∂ lnL(x1, . . . , xn, θ1, θ2, . . . , θr)
∂θr

= 0. (4.14)

4.4 Confidence Intervals
Confidence intervals for an unknown parameter θ of some distribution are intervals (−∞, θU〉,
or 〈θL,+∞), or 〈θL, θU〉 (i. e. θ 5 θU , or θL 5 θ, or θL 5 θ 5 θU) that contain θ, not with
certainty but with a high probability γ, i. e.

P (θL 5 θ) = γ, P (θ 5 θU) = γ, P (θL 5 θ 5 θU) = γ, (4.15)

where γ is called the confidence level, and θL and θU are the lower and upper confidence
limits, respectively. They depend on γ. Sample characteristics θL and θU in (4.15) are
calculated from a sample x1, x2, . . . , xn. These are n observations of a random variable
X. We regard x1, x2, . . . , xn as single observations of n random variables X1, X2, . . . , Xn

(with the same distribution, namely, that of X). Then θL = θL(x1, x2, . . . , xn) and
θU = θU(x1, x2, . . . , xn) in (4.15) are observed values of two random variables ΘL =
ΘL(X1, X2, . . . , Xn) and ΘU = ΘU(X1, X2, . . . , Xn).

Remark 4.1. Confidence intervals are more valuable than point estimates. Indeed, we
can take the midpoint of (4.15) as an approximation of θ and half the length of (4.15) as
an error bound (not in the strict sense of numerical analysis, but except for an error whose
probability we known).

Remark 4.2. The larger γ we choose, the smaller the error probability α = 1− γ is, but
the longer the confidence interval will be. If γ → 1 (α→ 0), then its length goes to infinity.

4.4.1 Confidence Interval for µ of the Normal Distribution with
Known σ2

Theorem 4.5 (Sum of independent normal random variables). Let X1, X2, . . . , Xn be
independent normal random variables each of which has mean µ and variance σ2. Then
the following holds:

(1) The sum X1 +X2 + · · ·+Xn is normal with mean nµ and variance nσ2.

(2) The following random variable X̄ is normal with mean µ and variance σ2

n
.
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(3) The following random variable Z is normal with mean 0 and variance 1, i. e. Z ∼
N(0, 1), where

Z = X̄ − µ
σ
·
√
n. (4.16)

We know from the definition of distribution function that holds:

P (Z 5 x) = Φ(x) for all x ∈ R.

Let us take x = uγ = Φ−1(γ). Then we have

P (Z 5 uγ) = Φ(uγ) = Φ(Φ−1(γ)) = γ,

P

(
X̄ − µ
σ
·
√
n 5 uγ

)
= γ,

P

(
µ = X̄ − uγ ·

σ√
n

)
= γ. (4.17)

Here we have considered x1, x2, . . . , xn as single observations of X1, X2, . . . , Xn, so that
x1 + x2 + · · ·+ xn is an observed value of X1 +X2 + · · ·+Xn, and x̄ is an observed value
of X̄. Note further that (4.17) is of the form (4.15) with

ΘL = X̄ − uγ√
n
· σ. (4.18)

In a similar way, we get

P (Z > x) = 1− P (Z 5 x) = 1− Φ(x) = Φ(−x) for all x ∈ R.

Let us take x = −uγ = −Φ−1(γ). Then we have

P (Z > −uγ) = Φ(uγ) = Φ(Φ−1(γ)) = γ,

P

(
X̄ − µ
σ
·
√
n > −uγ

)
= γ,

P

(
µ < X̄ + uγ ·

σ√
n

)
= γ. (4.19)

Here we have considered x1, x2, . . . , xn as single observations of X1, X2, . . . , Xn, so that
x1 + x2 + · · ·+ xn is an observed value of X1 +X2 + · · ·+Xn, and x̄ is an observed value
of X̄. Note further that (4.19) is of the form (4.15) with

ΘU = X̄ + uγ√
n
· σ. (4.20)
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In a similar way, we get two-sided confidence interval:

P (|Z| 5 x) = 1− P (|Z| > x) = 1− (P (Z < −x) + P (Z > x)) =

= 1− (Φ(−x) + (1− Φ(x))) = −1 + 2 · Φ(x) for all x ∈ R.
Let us take x = u 1+γ

2
= Φ−1(1+γ

2 ). Then we have

P (|Z| 5 u 1+γ
2

) = −1 + 2 · Φ(u 1+γ
2

) = −1 + 2 · Φ
(

Φ−1
(1 + γ

2

))
= γ,

P

(∣∣∣∣∣X̄ − µσ
·
√
n

∣∣∣∣∣ 5 u 1+γ
2

)
= γ,

P

(
X̄ − u 1+γ

2
· σ√

n
5 µ 5 X̄ + u 1+γ

2
· σ√

n

)
= γ. (4.21)

Here we have considered x1, x2, . . . , xn as single observations of X1, X2, . . . , Xn, so that
x1 + x2 + · · ·+ xn is an observed value of X1 +X2 + · · ·+Xn, and x̄ is an observed value
of X̄. Note further that (4.21) is of the form (4.15) with

ΘL = X̄ − u 1+γ
2
· σ√

n
, ΘU = X̄ + u 1+γ

2
· σ√

n
. (4.22)

4.4.2 Confidence Interval for µ of the Normal Distribution with
Unknown σ2

Theorem 4.6. Let X1, X2, . . . , Xn be independent normal random variables with same
mean µ and the same variance σ2, i. e. N(µ, σ2). Then the random variable:

T = X̄ − µ
s
·
√
n (4.23)

has a t-distribution with n − 1 degrees of freedom, i. e. T ∼ t(n − 1). Here s is given by
(4.3) and X̄ is given by (4.1).

Let F be a distribution function of the t-distribution and F (x) = γ. Then x = tγ(n) =
F−1(γ). Using the same procedure as in the section 4.4.1 we receive the following confidence
intervals:
(a) One-sided confidence interval 〈ΘL,∞):

ΘL = X̄ − tγ(n− 1) · s√
n
, (4.24)

(b) One-sided confidence interval (−∞,ΘU〉:

ΘU = X̄ + tγ(n− 1) · s√
n
, (4.25)

(c) Two-sided confidence interval 〈ΘL,ΘU〉:

ΘL = X̄ − t 1−γ
2

(n− 1) · s√
n
, ΘU = X̄ − t 1+γ

2
(n− 1) · s√

n
. (4.26)
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4.4.3 Confidence Interval for the Variance σ2 of the Normal Dis-
tribution

Theorem 4.7. Let X1, X2, . . . , Xn be independent variables from normal distribution
N(µ, σ2). Then the random variable

Y = (n− 1) · s
2

σ2 (4.27)

with s2 given by (4.2) has a chi-square distribution with n − 1 degrees of freedom, i. e.
Y ∼ χ2(n− 1).

Let F be a distribution function of the chi-distribution and F (x) = γ. Then x =
χ2
γ(n) = F−1(γ). Using the same procedure as in the sections 4.4.1 and 4.4.2 we receive

the following confidence intervals:

(a) One-sided confidence interval 〈ΘL,∞):

ΘL = (n− 1) · s2

χ2
γ(n− 1) , (4.28)

(b) One-sided confidence interval (−∞,ΘU〉:

ΘU = (n− 1) · s2

χ2
1−γ(n− 1) , (4.29)

(c) Two-sided confidence interval 〈ΘL,ΘU〉:

ΘL = (n− 1) · s2

χ2
1+γ

2
(n− 1) , ΘU = (n− 1) · s2

χ2
1−γ

2
(n− 1) . (4.30)

4.5 Testing of Hypotheses
The ideas of confidence intervals and of tests are perhaps the two most important ideas in
mathematical statistics. In a statistical test we make inference from sample to population
trough testing a hypothesis, resulting from experience or observation, from a theory or a
quality requirement, and so on. In many cases the result of a test is then used as a basis
for a decision, for instance, to buy or not to buy a certain model of car, depending on a
test of the gasoline mileage, to aply some medication, depending on a test of its effect, to
proceed with a marketing strategy, depending on a test of consumer reactions, etc.

Now we define important terms and notations for statistical hypothesis testing.

Definition 4.3 (Basic terms and notations for testing of hypotheses:). Test of a hypothesis,
alternative hypothesis, significance level, and etc. are defined as follows:
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Null hypothesis: Null hypothesis H0 is a statement of zero or no change. If the original
claim includes equality (5, =, or =), it is the null hypothesis H0. If the original claim
does not include equality (<, 6= , >) then the null hypothesis is the complement of
the original claim. The null hypothesis always includes the equal sign. The decision
is based on the null hypothesis H0.

Alternative hypothesis: Alternative hypothesis (alternative) H1 is a statement which
is true if the null hypothesis H0 is false. The type of test (left test, right test, or
two-tail test) is based on the alternative hypothesis H1.

Significance level: Significance level is the probability of rejecting the null hypothesis H0
if it is true. The most used significance levels are α = 0,05, α = 0,10, and α = 0.01.
If no level of significance α is given, use α = 0.05. The level of significance is the
complement of the level of confidence in estimation, i. e. α = 1− γ.

Critical region: Critical region CR is a set of all values which would cause us to reject
the null hypothesis H0.

Test statistic: Test statistic TS is a sample statistic used to decide whether to reject or
fail to reject the null hypothesis H0.

Type I error: Type I error is rejecting the null hypothesis H0 if it is true (saying false
when true). Usually the more serious error. The value α is a probability of making
a Type I error.

Type II error: Type II error is failing to reject the null hypothesis H0 if it is false (saying
true when false). The value β is a probability of making a Type II error.

Critical value(s): Critical value(s) is (are) the value(s) which separates the critical region
CR from the non-critical region. The critical values are determined independently
of the sample statistics.

Decision: Decision is a statement based upon the null hypothesis H0. It is either “reject
the null hypothesis” or “fail to reject the null hypothesis”. We will never accept the
null hypothesis.

Conclusion: Conclusion is a statement which indicates the level of evidence (sufficient or
insufficient), at what level of significance, and whether the original claim is rejected
(H0) or supported (H1).

Steps of the TEST:

Step 1: Formulate the null hypothesis H0: θ = θ0 to be tested.

Step 2: Formulate an alternative H1: θ = θ1, i. e. θ 6= θ0 or θ > θ0 or θ < θ0.

Step 3: Choose a significance level α.
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Step 4: Use a random variable Θ̂ = g(X1, X2, . . . , Xn) whose distribution depends on the
hypothesis and on the alternative and is known in both cases. Determine a critical
value c from the distribution of Θ̂, assuming the hypothesis to be true, i. e. Θ̂ = TS
and c is given from probability P (TS 5 c) = α.

Step 5: Use a sample x1, x2, . . . , xn to determine an observe value θ̂ = g(x1, x2, . . . , xn) of
Θ̂.

Step 6: Accept or reject the hypothesis, depending on the size of θ̂ relative to c.

Remark 4.3. We shell accept the hypothesis if the test suggests that it is true, except for
a small error probability α, called the significance level of the test. Otherwise we reject
the hypothesis. We know that α is the probability of rejecting a true hypothesis. And we
shall discus the probability β of accepting a false hypothesis.

4.5.1 Kinds of Alternatives
We describe the kinds of alternatives of the statistical testing. Let θ be an unknown
parameter in a distribution and suppose that we want to test the hypothesis H0: θ = θ0.
Then there are three main kinds of alternatives, namely:

H1 : θ > θ0, (4.31)

H1 : θ < θ0, (4.32)

H1 : θ 6= θ0. (4.33)

Inequalities (4.31) and (4.32) are one-sided alternatives and inequality (4.33) is a two-sided
alternative. In (4.31) the critical value c lies to the right of θ0 because the alternative lies
to the right of θ0. Hence the rejection region (CR) extends to the right. This is called
a right-sided test. In (4.32) the critical value c lies to the left of θ0, the rejection region
extends to the left, and we have a left-sided test. These are one-sided tests. In (4.33) we
have two rejection regions. This is called a two-sided test.

4.5.2 Types of Errors in Tests
Tests always involve risk of making false decisions:

(I) Rejecting a true hypothesis is Type I Error. The number α is a probability of making
a Type I error.

(II) Accepting a false hypothesis is Type II Error. The number β is a probability of
making a Type II errors.



95 4.5. TESTING OF HYPOTHESES

Clearly, we cannot avoid these errors because certain conclusion about population is based
only on small sample of population. But we show that there are ways and means of choosing
suitable levels of risk, that is, of values α and β. The choice of α depends on the nature of
the problem (e. g. small risk α = 1% or α = 0,5% is used if it is a matter of life or death).

Let us discuss this systematically for a test of a hypothesis H0: θ = θ0 against an
alternative that is a single number θ1, for simplicity (H1: θ = θ1). Without loss of generality
suppose θ1 > θ0, so that we have a right-sided test. For a left-sided test or a two-sided test
the discussion is similar.2

We choose a critical c > θ0 by methods discussed below. From a given sample
x1, x2, . . . , xn we then compute a value:

θ̂ = g(x1, x2, . . . , xn),

with a suitable g (for instance, take g = 1
n
·
n∑
i=1

xi in the case in which θ is the mean). If

θ̂ > c, we reject the hypothesis. If θ 5 c, we accept it. Here, the value θ̂ can be regarded
as an observed value of the random variable:

Θ̂ = g(X1, X2, . . . , Xn)

because xj may be regarded as an observed value of Xj for j = 1, 2, . . . , n. In this test
there are two possibilities of making some errors, as follows.
Type I error: (see Table 4.1) The hypothesis is true but is rejected (hence its alternative
is accepted) because Θ assumes a value θ̂ > c. Obviously, the probability of making such
an error equals:

P (Θ̂ > c)θ=θ0 = α. (4.34)
α is called the significance level of the test.
Type II error: (see Table 4.1) The hypothesis is false but is accepted because Θ assumes
a value θ̂ 5 c. The probability of making such an error is defined by β:

P (Θ̂ 5 c)θ=θ1 = β. (4.35)

η = 1− β is called the power of the test.
Formulas (4.34) and (4.35) show that both α and β depend on c, and we would like to

choose c so that these probabilities of making errors are as small as possible. But these are
conflicting requirements because to let α decrease we must shift c to the right, but then β
increases. In practice we first choose α, then determine c, and finally compute β. If β is
large, so that the power of the test η is small. We should repeat the test, choosing a larger
sample.

If the alternative is not a single number but is of the form (4.31), (4.32), or (4.33), then
β becomes a function of θ. This function β(θ) is called the operating characteristic (OC)
of the test and its curve the OC curve. Clearly, in the case η = 1 − β also depends on θ.
This function η(θ) is called the power function of the test.

2This standard notation has absolutely nothing to do with the use of the notation θ1 in connection
with confidence intervals.
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Table 4.1: Type I and Type II errors in testing a hypothesis H0: θ = θ0 and H1: θ = θ1.

Unknown Truth
Accepted θ = θ0 θ = θ1

True decision Type II error
θ = θ0 P = 1− α P = β

Type I error True decision
θ = θ1 P = α P = 1− β

Remark 4.4. Of course, from a test that leads to the acceptance of a certain hypothesis
θ0, it does not follow that this is the only possible hypothesis or the test posible hypothesis.
Hence the terms not reject or fail to reject are perhaps better than the term accept.

4.5.3 Test of µ of the Normal Distribution with Known σ2

Let X be a normal random variable, X ∼ N(µ, σ2). Using the sample of size n with mean
x̄ we will test the hypothesis:
H0: µ = µ0,
H1: µ > µ0 or H1: µ < µ0 or H1: µ 6= µ0.

Case 1: We determine c from P (X̄ > c)µ−µ0 = α, that is

P (X̄ 5 c)µ=µ0 = Φ
(
c− µ0

σ
·
√
n
)

= 1− α = γ.

Test statistic is:
TS = x̄− µ0

σ
·
√
n

and the critical region is:
CR = (u1−α,∞) .

Case 2: We determine c from P (X̄ 5 c)µ−µ0 = α, that is

P (X̄ 5 c)µ=µ0 = Φ
(
c− µ0

σ
·
√
n
)

= α.

Test statistic is:
TS = x̄− µ0

σ
·
√
n

and the critical region is:
CR = (−∞,−u1−α) .
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Case 3: We determine c from P (c1 5 X̄ 5 c2)µ−µ0 = α. We choose c1 and c2 equidistant
from µ0, say, c1 = µ0 − k and c2 = µ0 + k, and determine k from:

P (µ0 − k 5 X̄ 5 µ0 + k)µ=µ0 = Φ
(
k

σ
·
√
n

)
− Φ

(
−k
σ
·
√
n

)
= 1− α = γ.

Test statistic is:
TS = x̄− µ0

σ
·
√
n

and the critical region is:

CR =
(
−∞,−u1−α2

)
∪
(
u1−α2 ,∞

)
.

4.5.4 Test of µ of the Normal Distribution with Unknown σ2

Let X be a normal random variable, X ∼ N(µ, σ2). Using the sample of size n with mean
x̄ and sample standard deviation sn−1 we will test the hypothesis:
H0: µ = µ0,
H1: µ > µ0 or H1: µ < µ0 or H1: µ 6= µ0.
Using analogous relationships as in section 4.5.3 we get:

Case 1: Right-sided test is
Test statistic is:

TS = x̄− µ0

sn−1
·
√
n

and the critical region is:
CR = (t1−α(n− 1),∞) .

Case 2: Left-sided test is
Test statistic is:

TS = x̄− µ0

sn−1
·
√
n

and the critical region is:

CR = (−∞,−t1−α(n− 1)) .

Case 3: Two-sided test is
Test statistic is:

TS = x̄− µ0

sn−1
·
√
n

and the critical region is:

CR =
(
−∞,−t1−α2 (n− 1)

)
∪
(
t1−α2 (n− 1),∞

)
.
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4.5.5 Test of the Variance of the Normal Distribution
Let X be a normal random variable, X ∼ N(µ, σ2). Using the sample of size n with mean
x̄ and sample variance s2

n−1 we will test the hypothesis:

Case 1: Right-sided test is
H0: σ2 = σ2

0,
H1: σ2 > σ2

0.
Test statistic is:

TS = (n− 1) · s
2
n−1
σ2

0

and the critical region is:

CR =
(
χ2

1−α(n− 1),∞
)
.

Case 2: Left-sided test is
H0: σ2 = σ2

0,
H1: σ2 < σ2

0.
Test statistic is:

TS = (n− 1) · s
2
n−1
σ2

0

and the critical region is:
CR =

(
0, χ2

α(n− 1)
)
.

Case 3: Two-sided test is
H0: σ2 = σ2

0,
H1: σ2 6= σ2

0.
Test statistic is:

TS = (n− 1) · s
2
n−1
σ2

0

and the critical region is:

CR =
(
−∞, χ2

α
2
(n− 1)

)
∪
(
χ2

1−α2
(n− 1),∞

)
.

4.5.6 Comparison of the Variance of Two Normal Distributions
Theorem 4.8. Let X1, X2, . . . , Xn1 be a random sample from distribution N(µ1, σ

2), and
Y1, Y2, . . . , Yn1 be a random sample from distribution N(µ2, σ

2). Suppose, that random
variables X and Y are independent. Then the random variable:

Z = s2
1
s2

2
(4.36)

has a distribution F (n1 − 1, n2 − 1).



99 4.5. TESTING OF HYPOTHESES

Based on the Theorem 4.8 so-called Fisher’s test can be derived.

H0: σ2
1 = σ2

2,
H1: σ2

1 6= σ2
2.

Test statistic is:
TS = s2

1
s2

2
, s2

1 > s2
2

and the critical region is:

CR =
(
0, Fα

2
(n1 − 1, n2 − 1)

)
∪
(
F1−α2 (n1 − 1, n2 − 1),∞

)
.

H0: σ2
1 = σ2

2,
H1: σ2

1 > σ2
2.

Test statistic is:
TS = s2

1
s2

2
, s2

1 > s2
2

and the critical region is:

CR = (F1−α(n1 − 1, n2 − 1),∞) .

H0: σ2
1 = σ2

2,
H1: σ2

1 < σ2
2.

Test statistic is:
TS = s2

1
s2

2
, s2

1 > s2
2

and the critical region is:
CR = (0, Fα(n1 − 1, n2 − 1)) .

4.5.7 Comparison of the Mean of Two Normal Distributions
Theorem 4.9. Let X1, X2, . . . , Xn1 be a random sample from distribution N(µ1, σ

2), and
Y1, Y2, . . . , Yn1 be a random sample from distribution N(µ2, σ

2). Suppose, that random
variables X and Y are independent. Then the random variable:

Z = (X̄ − Ȳ )− (µ1 − µ2)√
σ2

1
n1

+ σ2
2
n2

(4.37)

has a distribution N(0, 1).

Based on the Theorem 4.9 the following test can be derived.
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Case 1: We suppose, that σ1 and σ2 are known. Test statistic is:

TS = (x̄1 − x̄2)√
σ2

1
n1

+ σ2
2
n2

.

Critical region is:
H0: µ1 = µ2
H1: µ1 6= µ2

CR =
(
−∞,−u1−α2

)
∪
(
u1−α2 ,∞

)
H0: µ1 = µ2
H1: µ1 > µ2

CR = (u1−α,∞)

H0: µ1 = µ2
H1: µ1 < µ2

CR = (−∞,−uα)

Case 2: We suppose, that σ1 and σ2 are unknown and we can assume that σ1 = σ2. Then
the test is:
Test statistic is:

TS = (x̄1 − x̄2)√
σ2

1 · (n1 − 1) + σ2
2 · (n2 − 1)

·
√
n1 · n2 · (n1 + n2 − 2)

n1 + n2
.

Critical region is:
H0: µ1 = µ2
H1: µ1 6= µ2

CR =
(
−∞,−t1−α2 (n1 + n2 − 2)

)
∪
(
t1−α2 (n1 + n2 − 2),∞

)
H0: µ1 = µ2
H1: µ1 > µ2

CR = (t1−α(n1 + n2 − 2),∞)

H0: µ1 = µ2
H1: µ1 < µ2

CR = (−∞,−tα(n1 + n2 − 2))
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Case 3: We suppose, that σ1 and σ2 are unknown and we cannot assume that σ1 = σ2.
Then the test is:
Test statistic is:

TS = (x̄1 − x̄2)√
s2

1
n1

+ s2
2
n2

.

Critical region is:
H0: µ1 = µ2
H1: µ1 6= µ2

CR =
(
−∞,−t1−α2 (n0)

)
∪
(
t1−α2 (n0),∞

)
,

where

n0 =

(
s2

1
n1

+ s2
2
n2

)2

1
n1−1 ·

(
s2

1
n1

)2
+ 1

n2−1 ·
(
s2

2
n2

)2 .

Case 4: We suppose, that σ1 and σ2 are unknown and n1 = n2 = n. Then the test is:
Test statistic is:

TS = (x̄1 − x̄2)√
s2

1 + s2
2

·
√
n.

Critical region is from the case 1, if n > 30 and from the case 2, if n < 30.

4.6 Solved Examples
Example 4.1. A maximum standard deviation of 0,2 mm is stated by manufacturer of
cutting machine. The customer wants to cut 6 rods at 30 cm. The length of the cut-off
rods (in cm) are: 30,003; 30,022; 29,963; 30,056; 30,004; 29,938. At a significance level of
5% test, whether the data specified by the manufacturer is truthful. List all intermediate
results.
Solution:
Using a sample 30,003; 30,022; 29,963; 30,056; 30,004; 29,938 from a normal distribution
we want to test the hypothesis:
H0: σ2 = σ2

0,
H1: σ2 > σ2

0,
where σ = 0,02. We can write:
H0: σ2 = 0,0004,
H1: σ2 > 0,0004.
Size of the sample is n = 6 and significance level α is 5%. We compute the sample mean
x̄, see (4.1) and sample variance s2

n−1, see (4.2). We compute the value of test statistic

TS = (n− 1) · s
2
n−1
σ2

0
= (6− 1) · (0,042 013)2

(0,02)2 = 5 · 0,001 765 1
0,000 4 = 22,064
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We choose the quantile χ2
1−α(n − 1) = χ2

0,95(5) = 11,070. Then the critical region CR
(critical interval) is

CR = (χ2
1−α(n− 1),∞) = (χ2

0,95(5),∞) = (11,070,∞).

We can see that TS ∈ CR, because of that we reject null hypothesis. The manufacturer
does not state the correct maximum deviations.

√

Example 4.2. Calculate 90% right-sided confidence interval for standard deviation of
the average age of active sportsmen at the university. Assume a normal distribution of
sampling. The measurement data are shown below in the table:

Age [years] 20 24 28 32 36 40 44 48 52
Count [ps] 28 69 54 37 22 21 10 6 3

At a significance level of 5% test the hypothesis: H0 : µ = 25 against the hypothesis
H1 : µ 6= 25.
Solution:
90% confidence interval: γ = 0,9 and α = 1 − γ = 0,1. The sample mean is x̄ = 29,71
and the sample variance is s2

n−1 = 55,723 95. Sample size is n = 250. Using Eq. (4.29) we
compute

L = 0,

U = (n− 1) · s2
n−1

χ2
1−γ(n− 1) = (n− 1) · s2

n−1
χ2
α(n− 1) =

= (250− 1) · s2
n−1

χ2
0,1(250− 1) = 249 · 55,723 95

220,863 4 = 62,822 83.

σ ∈ (L;U)⇒ σ ∈ (0; 7,926 085).
We now determine test for the mean of the normal distribution with unknown variance.
Significance level is α = 0,05, so γ = 1− α = 0,95.
H0: µ = 25 against the hypothesis,
H1: µ 6= 25.
We compute the test statistic:

TS = x̄− µ0

sn−1
·
√
n = 29,71− 25

7,926 085 ·
√

250 = 9,399 755.

We determine the critical region CR (critical interval):

CR = (−∞,−t1−α2 (n− 1)) ∪ (t1−α2 (n− 1),∞) =

= (−∞,−t0,975(249)) ∪ (t0,975(249),∞).
CR = (−∞,−1.969 5) ∪ (1.969 5,∞).

TS ∈ CR thus, the null hypothesis H0 is rejected. We can not expect that the average age
of sportsmen at the university is 25 years on the significance level of 5%.

√
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4.7 Unsolved Tasks
4.1. We performed 32 analyses of concentrations of chemicals in the solution with these
results:

xi 9 11 12 14 15 16 17 18 20 21
ni 1 2 3 4 7 5 4 3 2 1

We know, that σ2 = 7,4. Calculate:

a) 99% two-sided confidence interval for the unknown mean value µ.

b) 99% left-sided confidence interval for the unknown mean value µ.

c) 95% right-sided confidence interval for the unknown mean value µ.

4.2. There has been a series of products and after the grinding we chose 200 pieces for
control measurements. Results are presented in the table:

Size [mm] 3,7 3,8 3,9 4,0 4,1 4,2 4,3 4,4
Count [ps] 1 22 40 79 29 26 4 1

Calculate 95% two-sided confidence interval for median of size of all products.

4.3. We made a random sample from population that is given by a table:

Ii 15-17 17-19 19-21 21-23 23-25 25-27
ni 10 30 50 70 60 30

Calculate 95% two-sided confidence interval for median of size of all products.

4.4. The percentage of tin in the ore samples was measured. The results are in the table:

xi 30 35 40 45 50 55 60 65 70 75
ni 1 3 4 10 15 20 11 5 3 2

We know that σ2 = 85 and level of significance is α = 0,05. Test the hypothesis: H0:
µ = 52 against H1: µ 6= 52.

4.5. Line of urban bus transport has mean velocity of 8 km/h in the time of rush hour
in the centre of the town. It was considered, whether a route changes can result in the
increase of the mean velocity in the city centre. The new route was tested in the 10
randomly selected days. These mean velocities have been observed: 8,5; 9,5; 7,8; 8,2; 9,0;
7,5; 8,2; 7,8; 9,0; 8,5. On the levels of significance α = 0,05 and α = 0,01 consider, if a
change of route leads to an increase of mean velocity, or not.
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4.6. At the production of yarn, the required average strength of the produced yarn is 185
[Pa]. The quality tests of yarn determined strength as shown in the table:

[Pa] 120-140 140-160 160-180 180-200 200-220 220-240 240-260 260-280
[pc] 9 16 18 22 15 10 8 2

At the significance level α = 0,01 test, whether the yarn produced on average corresponds
to the required strength. (i. e. H0: µ = 185 against H1: µ 6= 185).

4.7. According to the manufacturer, the variability of service life of by him made screens is
represented by standard deviation 45 hours. The data of service life of randomly selected
50 screens made by this manufacturer is shown in the table:

[Pa] 1860-1900 1900-1940 1940-1980 1980-2020 2020-2060 2060-2100 2100-2140
[pc] 1 4 12 14 15 3 1

By testing on significance level α = 0,02 verify, whether it is possible to admit the assump-
tion, that the variability service life of screens is such as the manufacturer claims or is not.
(i. e. H0: σ2 = 2025 against H1: σ2 6= 2025).

4.8. By weighting we get data about exact quantity of automatically packaged products.
Results before configuration of packing machine [g]: 243,2; 244,8; 253,1; 251,0; 251,7;
254,0; 252,5; 252,8; 250,1;247,3; 250,9; 253,2; 252,7. Results after configuration of packing
machine [g]: 250,4; 250,2; 251,1; 249,3; 249,9; 250,2; 251,1. On the significance level of
5% determine if the mean value has changed after configuration of machine. We assume
normal distribution of both samples.

4.9. Given product can be produced by two technological procedures. We found out, by
control measurement, that randomly selected products, have these data about quality:
Procedure A: 13, 15, 15, 14, 13,
Procedure B: 13, 12, 14, 13, 13, 15, 16.
On the significance level 5% decide, whether the dispersion quality of the both technological
procedures differs. We assume the normal division of both selected sets.

4.10. The samples were analyzed by the chemical polarographic method with the mea-
surement results 38,2; 36,4; 37,7; 36,1; 37,9; 37,8 and titration method with results of the
measured 39,5; 38,7; 37,8; 38,6; 39,2; 39,1; 38,9; 39,2. It is known that in both of these
measurements is a normal probability distribution of the same dispersion. At a significance
level of 5% verify the hypothesis of the equivalence of both methods.
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4.8 Results of Unsolved Tasks
4.1 a) µ ∈ (14,1051, 16,5824) b) µ ∈ (14,2250,∞) c) µ ∈ (−∞, 16,1347)
4.2 a) n = 0;x(1) = 0;x(n) = 0;R = 0; x̄ = 0; x̃ = 0; x̂ = 0; s2 = 0; s = 0; qL = 0; qU =
0; IQR = 0; γ3 = 0; γ4 = 0 b) n = 0;x(1) = 0;x(n) = 0;R = 0; x̄ = 0; x̃ = 0; x̂ =
0; s2 = 0; s = 0; qL = 0; qU = 0; IQR = 0; γ3 = 0; γ4 = 0 c) n = 0; x(1) = 0; x(n) =
0;R = 0; x̄ = 0; x̃ = 0; x̂ = 0; s2 = 0; s = 0; qL = 0; qU = 0; IQR = 0; γ3 = 0; γ4 = 0 d)
n = 0;x(1) = 0;x(n) = 0;R = 0; x̄ = 0; x̃ = 0; x̂ = 0; s2 = 0; s = 0; qL = 0; qU = 0; IQR =
0; γ3 = 0; γ4 = 0
4.3 n = 250; x̄ = 21,84; s2

n = 7,0144; s2
n−1 = 7,0426; sn = 2,6485; sn−1 = 2,6538;

t0,975(249) = 1.9695;µ ∈ (21,50943705, 22,17056295)
4.5 n = 10; H0: µ = 8; H1: µ > 8; µ0 = 8; TS = 2,0112; for α = 0,01: CR =
(t1−α(n − 1),∞) = (t0,99(9),∞) = (2,8214,∞); TS /∈ CR =⇒ H0 do not reject, and for
α = 0,05: CR = (t1−α(n− 1),∞) = (t0,95(9),∞) = (1,8331,∞); TS ∈ CR =⇒ H0 reject.
4.7 n = 50; H0: σ2 = 452; H1: σ2 6= 452; TS = 57,6632; CR = (0, χ2

0,01(49),∞) ∪
(χ2

0,99(49)) = (0, 28,9406) ∪ (74,9195,∞); TS /∈ CR =⇒ H0 do not reject.
4.9 n1 = 5; n2 = 8; H0: σ2

1 = σ2
2; H1: σ2

1 6= σ2
2; TS = 1,90480;

CR =
(
0, Fα

2
(n1 − 1, n2 − 1)

)
∪
(
F1−α2 (n1 − 1, n2 − 1),∞

)
= (0, F0,025(6, 4))∪(F0,975(6, 4),∞) =

(0, ) ∪ (6,2272,∞); TS /∈ CR =⇒ H0 do not reject.
4.10 n1 = 6; n2 = 8; H0: µ1 = µ2; H1: µ1 6= µ2; TS = 4,0864;
CR =

(
−∞,−t1−α2 (n1 + n2 − 2)

)
∪
(
t1−α2 (n1 + n2 − 2),∞

)
= (−∞,−t0,975(12))∪(t0,975(12),∞) =

(−∞,−2,1788) ∪ (2,1788,∞); TS ∈ CR =⇒ H0 reject.
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