
MINIMAL FORMS

Example

Write minimal conjunctive form and minimal disjunctive form of a given Boolean
function.

a) f (x , y , z) which has value 0 only in arguments (0,0,1), (1,1,0), (1,0,1),
(1,0,0) ,

b) f (p, q, r) which has value 1 only in arguments (1,1,1) and (0,0,1),
c) f (p, q, r , s) which has value 0 only in arguments (0,0,1,0), (1,0,0,0),

(1,0,1,0), (1,0,0,1), (1,1,0,0), (1,1,0,1) and (1,0,1,1).

Solution:
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MINIMAL FORMS

a)

1 1 1 0

0 0 1 0

x

zy
00 10 11 01

1

0

Minimal conjunctive form is
(
x ∨ z

)
∧
(
y ∨ z

)
.

1 1 1 0

0 0 1 0

x

yz
00 10 11 01

1

0

Minimal disjunctive form is
(
x ∧ z

)
∨
(
y ∧ z

)
.
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MINIMAL FORMS

b)

0 0 0 1
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0 0 0 0 1
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qr
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Minimal conjunctive form is
(
p ∨ q

)
∧
(
p ∨ q

)
∧ r .

Minimal disjunctive form is
(
p ∧ q ∧ r

)
∨
(
p ∧ q ∧ r

)
.
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MINIMAL FORMS

c)
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0 1 1 0
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00
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01

00 10 11 01
rsrs

pq

Minimal conjunctive form is (p ∨ q) ∧ (q ∨ r ∨ s) ∧ (p ∨ r).
Minimal disjunctive form is (p ∧ r) ∨ (q ∧ r) ∨ (p ∧ s).
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MINIMAL FORMS

Example

Without using Karnaugh maps, find minimal disjunctive form of the Boolean
function which normal disjunctive form is given.

a) (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z),

b) (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z),

c) (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z).

Solution:
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MINIMAL FORMS

a)
(x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) =
((x ∧ z) ∧ (y ∨ y)) ∨ ((x ∧ z) ∧ (y ∨ y)) = (x ∧ z) ∨ (x ∧ z)

b)
(x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) =
((y ∧z)∧(x∨x))∨((x∧z)∧(y ∨y))∨((y ∧z)∧(x∨x)) = (y ∧z)∨(x∧z)∨(y ∧z)
= (y ∧ (z ∨ z)) ∨ (x ∧ z) = y ∨ (x ∧ z)

c)
(x∧y∧z)∨(x∧y∧z)∨(x∧y∧z) = ((x∧y)∧(z∨z))∨(x∧y∧z) = (x∧y)∨(x∧y∧z).
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MINIMAL FORMS

Example

Write normal disjunctive form and normal conjunctive form and also both minimal
forms for of the Boolean function f (x , y , z) which is given by formula (x ∨ y)⇒ z .

Solution:

x y z f (x , y , z)

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 1
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MINIMAL FORMS

Normal disjunctive form is
(x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z).

Normal conjunctive form is
(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z).

(x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)
= (x ∧ z) ∨ (x ∧ z) ∨ (x ∧ y ∧ z) = z ∨ (x ∧ y ∧ z) = z ∨ (x ∧ y), that is minimal
disjunctive form.

(x∨y∨z)∧(x∨y∨z)∧(x∨y∨z) = z∨(x∧(x∨y)) = z∨(x∧y) = (x∨z)∧(y∨z),
that is minimal conjunctive form.
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MINIMAL FORMS

1 1 0 1

1 1 0 0

x

yz
00 10 11 01

1

0

Minimal disjunctive form is z ∨ (x ∧ y).

Minimal conjunctive form is (x ∨ z) ∧ (y ∨ z).
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GRAPHS
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GRAPHS

Definition

A graph is a pair G = (V ,E ) where V is a nonempty finite set and E is a set of
two–element subsets of V .

G = (V ,E )
V = {v1, v2, v3, v4}, E = {{v1, v3}, {v2, v4}, {v1, v4}, {v2, v3}}

The elements of V are called the vertices of the graph, and the elements of E are
called the edges of the graph.
Let G be a graph. If we neglect to give a name to the vertex set and edge set of
G , we can simply write V (G ) and E (G ) for the vertex and edge sets, respectively.
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GRAPHS

How to draw pictures of graphs? These pictures make graphs much easier to
understang.
A drawing of the graph G = (V ,E ) is a mapping that assing a point in the plane
for each vertex and for each edge a continuous curve between its two endpoints.
A drawing of the graph is not the same thing as the graph itself.
The following two drawings both depict the same graph.

v3v1

v4 v2 v1 v2 v3 v4
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GRAPHS

Definition

A multigraph G = (V ,E ) consists of a set of vertices V , a set of edges E , and a
function f from E to {{u, v} : u, v ∈ V , u 6= v}. The edges e1 and e2 are called
multiple or parallel edges if f (e1) = f (v2).

G = (V ,E )
V = {v1, v2, v3, v4}, E = {{v1, v3}, {v2, v4}, {v1, v4}, {v2, v3}, {v1, v4}{v1, v3}}

v3v1

v4 v2
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GRAPHS

Definition

Two vertices u and v in a graph G = (V ,E ) are called adjacent in G if {u, v} is
an edge of G.
If e = {u, v}, the edge e is called incident with the vertices u and v.

If {u, v} is an edge of G , we call u and v the endpoints of the edge.

Definition

Let G = (V ,E ) be a graph and let v ∈ V . The degree of v is the number of
edges with which v is incident. The degree of v is denoted deg(v) or δ(v).

Theorem

Let G = (V ,E ). The sum of the degrees of the vertices in G is twice the number
of edges, that is, ∑

v∈V

deg(v) = 2 · |E |
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GRAPHS

Definition
If all vertices in G have the same degree, we call G regular. If a graph is regular
and all vertices have degree r , we also call the graph r–regular.
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GRAPHS

Definition
Let G be a graph. If all pairs of distinct vertices are adjacent in G, we call G
complete. A complete graph on n vertices is denoted Kn.

The opposite extreme is a graph with no edges. We call such graphs edgeless.
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GRAPHS

Definition
Let m, n ∈ N. The complete bipartite graph, Km,n, is a graph whose vertices can
be partitioned V = V1 ∪ V2 such that

• |V1| = m and |V2| = n

• for all u ∈ V1 and for all v ∈ V2, {u, v} is an edge.
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GRAPHS

Definition

Let G1 = (V1,E1) and G2 = (V2,E2) be graphs. We say that G1 is isomorphic to
G2 provided there is a bijection f : V1 → V2 such that for all u, v ∈ V1 we have
{u, v} ∈ E1 if and only {f (u), f (v)} ∈ E2. The function f is called an
isomorphism of G1 to G2.
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GRAPHS

Definition

Let G = (V ,E ) and G1 = (V1,E1) be graphs. We call G1 a subgraph of G
provided V1 ⊆ V and E1 ⊆ E.

Definition

Let G = (V ,E ) be a graph. We call G1 = (V1,E1) a spanning subgraph of G
provided V1 = V and E1 ⊆ E.

Definition

Let G be a graph. The complement of G is the graph denoted G defined by

V (G ) = V (G )

E (G ) = {{u, v} : u, v ∈ V (G ), u 6= v , {u, v} /∈ E (G )}

.
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GRAPHS

Definition

Let G = (V ,E ) be a graph. A walk of length n (n ∈ N) in G is a sequence of
vertices v0, v1, . . . vn of the graph such that {v0, v1}, {v1, v2}, . . . {vn−1, vn} are
edges, where v0 = u and vn = v.
A path of length n in a graph is a walk in which no vertex is repeated.
A cycle is a path of length at least three in which the first and last vertex are the
same, but no other vertices are repeated.

(u, v)–path
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GRAPHS

Definition

A graph G = (V ,E ) is called connected provided for all u, v ∈ V there is
(u, v)–path.

Definition

Let G = (V ,E ) be a graph and let u, v ∈ V . The distance from u to v in G is the
length of the shortest (u, v)–path. In case there is no such a path, we may either
say that the distance is undefined or ∞. The distance from u to v is denoted
d(u, v).
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