MINIMAL FORMS

Example

Write minimal conjunctive form and minimal disjunctive form of a given Boolean function.
a) $f(x, y, z)$ which has value 0 only in arguments ($0,0,1$), ($1,1,0$), ($1,0,1$), $(1,0,0)$
b) $f(p, q, r)$ which has value 1 only in arguments ($1,1,1$) and ($0,0,1$),
c) $f(p, q, r, s)$ which has value 0 only in arguments ($0,0,1,0$), ($1,0,0,0$), $(1,0,1,0),(1,0,0,1),(1,1,0,0),(1,1,0,1)$ and (1,0,1,1).

Solution:

MINIMAL FORMS

a)

Minimal conjunctive form is $(\bar{x} \vee z) \wedge(y \vee \bar{z})$.

Minimal disjunctive form is $(\bar{x} \wedge \bar{z}) \vee(y \wedge z)$.

MINIMAL FORMS

b)

Minimal conjunctive form is $(\bar{p} \vee q) \wedge(p \vee \bar{q}) \wedge r$. Minimal disjunctive form is $(p \wedge q \wedge r) \vee(\bar{p} \wedge \bar{q} \wedge r)$.

MINIMAL FORMS

c)

Minimal conjunctive form is $(\bar{p} \vee q) \wedge(q \vee \bar{r} \vee s) \wedge(\bar{p} \vee r)$. Minimal disjunctive form is $(\bar{p} \wedge \bar{r}) \vee(q \wedge r) \vee(\bar{p} \wedge s)$.

MINIMAL FORMS

Example

Without using Karnaugh maps, find minimal disjunctive form of the Boolean function which normal disjunctive form is given.
a) $(x \wedge y \wedge \bar{z}) \vee(\bar{x} \wedge y \wedge z) \vee(x \wedge \bar{y} \wedge \bar{z}) \vee(\bar{x} \wedge \bar{y} \wedge z)$,
b) $(x \wedge \bar{y} \wedge z) \vee(\bar{x} \wedge y \wedge z) \vee(x \wedge \bar{y} \wedge \bar{z}) \vee(\bar{x} \wedge \bar{y} \wedge z) \vee(\bar{x} \wedge \bar{y} \wedge \bar{z})$,
c) $(x \wedge \bar{y} \wedge z) \vee(\bar{x} \wedge y \wedge z) \vee(x \wedge \bar{y} \wedge \bar{z})$.

Solution:

MINIMAL FORMS

a)
$(x \wedge y \wedge \bar{z}) \vee(\bar{x} \wedge y \wedge z) \vee(x \wedge \bar{y} \wedge \bar{z}) \vee(\bar{x} \wedge \bar{y} \wedge z)=$
$((x \wedge \bar{z}) \wedge(y \vee \bar{y})) \vee((\bar{x} \wedge z) \wedge(\bar{y} \vee y))=(x \wedge \bar{z}) \vee(\bar{x} \wedge z)$
b)
$(x \wedge \bar{y} \wedge z) \vee(\bar{x} \wedge y \wedge z) \vee(x \wedge \bar{y} \wedge \bar{z}) \vee(\bar{x} \wedge \bar{y} \wedge z) \vee(\bar{x} \wedge \bar{y} \wedge \bar{z})=$
$((\bar{y} \wedge z) \wedge(x \vee \bar{x})) \vee((\bar{x} \wedge z) \wedge(y \vee \bar{y})) \vee((\bar{y} \wedge \bar{z}) \wedge(x \vee \bar{x}))=(\bar{y} \wedge z) \vee(\bar{x} \wedge z) \vee(\bar{y} \wedge \bar{z})$
$=(\bar{y} \wedge(z \vee \bar{z})) \vee(\bar{x} \wedge z)=\bar{y} \vee(\bar{x} \wedge z)$
c)
$(x \wedge \bar{y} \wedge z) \vee(\bar{x} \wedge y \wedge z) \vee(x \wedge \bar{y} \wedge \bar{z})=((x \wedge \bar{y}) \wedge(z \vee \bar{z})) \vee(\bar{x} \wedge y \wedge z)=(x \wedge \bar{y}) \vee(\bar{x} \wedge y \wedge z)$.

MINIMAL FORMS

Example

Write normal disjunctive form and normal conjunctive form and also both minimal forms for of the Boolean function $f(x, y, z)$ which is given by formula $(x \vee y) \Rightarrow \bar{z}$.

Solution:

x	y	z	$f(x, y, z)$
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	1

MINIMAL FORMS

Normal disjunctive form is
$(x \wedge y \wedge \bar{z}) \vee(x \wedge \bar{y} \wedge \bar{z}) \vee(\bar{x} \wedge y \wedge \bar{z}) \vee(\bar{x} \wedge \bar{y} \wedge z) \vee(\bar{x} \wedge \bar{y} \wedge \bar{z})$.
Normal conjunctive form is $(\bar{x} \vee \bar{y} \vee \bar{z}) \wedge(\bar{x} \vee y \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z})$.
$(x \wedge y \wedge \bar{z}) \vee(x \wedge \bar{y} \wedge \bar{z}) \vee(\bar{x} \wedge y \wedge \bar{z}) \vee(\bar{x} \wedge \bar{y} \wedge z) \vee(\bar{x} \wedge \bar{y} \wedge \bar{z})$
$=(x \wedge \bar{z}) \vee(\bar{x} \wedge \bar{z}) \vee(\bar{x} \wedge \bar{y} \wedge z)=\bar{z} \vee(\bar{x} \wedge \bar{y} \wedge z)=\bar{z} \vee(\bar{x} \wedge \bar{y})$, that is minimal disjunctive form.
$(\bar{x} \vee \bar{y} \vee \bar{z}) \wedge(\bar{x} \vee y \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z})=\bar{z} \vee(\bar{x} \wedge(x \vee \bar{y}))=\bar{z} \vee(\bar{x} \wedge \bar{y})=(\bar{x} \vee \bar{z}) \wedge(\bar{y} \vee \bar{z})$, that is minimal conjunctive form.

MINIMAL FORMS

	00	10	11	01
0	1	1	0	1
1	1	1	0	0

Minimal disjunctive form is $\bar{z} \vee(\bar{x} \wedge \bar{y})$.
Minimal conjunctive form is $(\bar{x} \vee \bar{z}) \wedge(\bar{y} \vee \bar{z})$.

GRAPHS

GRAPHS

Definition

A graph is a pair $G=(V, E)$ where V is a nonempty finite set and E is a set of two-element subsets of V.
$G=(V, E)$
$V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{3}\right\}\right\}$
The elements of V are called the vertices of the graph, and the elements of E are called the edges of the graph.
Let G be a graph. If we neglect to give a name to the vertex set and edge set of G, we can simply write $V(G)$ and $E(G)$ for the vertex and edge sets, respectively.

GRAPHS

How to draw pictures of graphs? These pictures make graphs much easier to understang.
A drawing of the graph $G=(V, E)$ is a mapping that assing a point in the plane for each vertex and for each edge a continuous curve between its two endpoints.
A drawing of the graph is not the same thing as the graph itself.
The following two drawings both depict the same graph.

GRAPHS

Definition

A multigraph $G=(V, E)$ consists of a set of vertices V, a set of edges E, and a function f from E to $\{\{u, v\}: u, v \in V, u \neq v\}$. The edges e_{1} and e_{2} are called multiple or parallel edges if $f\left(e_{1}\right)=f\left(v_{2}\right)$.

$$
\begin{aligned}
G & =(V, E) \\
V & =\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\left\{v_{1}, v_{3}\right\}\right\}
\end{aligned}
$$

GRAPHS

Definition

Two vertices u and v in a graph $G=(V, E)$ are called adjacent in G if $\{u, v\}$ is an edge of G.
If $e=\{u, v\}$, the edge e is called incident with the vertices u and v.
If $\{u, v\}$ is an edge of G, we call u and v the endpoints of the edge.

Definition

Let $G=(V, E)$ be a graph and let $v \in V$. The degree of v is the number of edges with which v is incident. The degree of v is denoted $\operatorname{deg}(v)$ or $\delta(v)$.

Theorem

Let $G=(V, E)$. The sum of the degrees of the vertices in G is twice the number of edges, that is,

$$
\sum_{v \in V} \operatorname{deg}(v)=2 \cdot|E|
$$

GRAPHS

Definition

If all vertices in G have the same degree, we call G regular. If a graph is regular and all vertices have degree r, we also call the graph r-regular.

GRAPHS

Definition

Let G be a graph. If all pairs of distinct vertices are adjacent in G, we call G complete. A complete graph on n vertices is denoted K_{n}.

The opposite extreme is a graph with no edges. We call such graphs edgeless.

GRAPHS

Definition

Let $m, n \in \mathbb{N}$. The complete bipartite graph, $K_{m, n}$, is a graph whose vertices can be partitioned $V=V_{1} \cup V_{2}$ such that

- $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$
- for all $u \in V_{1}$ and for all $v \in V_{2},\{u, v\}$ is an edge.

GRAPHS

Definition

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs. We say that G_{1} is isomorphic to G_{2} provided there is a bijection $f: V_{1} \rightarrow V_{2}$ such that for all $u, v \in V_{1}$ we have $\{u, v\} \in E_{1}$ if and only $\{f(u), f(v)\} \in E_{2}$. The function f is called an isomorphism of G_{1} to G_{2}.

GRAPHS

Definition

Let $G=(V, E)$ and $G_{1}=\left(V_{1}, E_{1}\right)$ be graphs. We call G_{1} a subgraph of G provided $V_{1} \subseteq V$ and $E_{1} \subseteq E$.

Definition

Let $G=(V, E)$ be a graph. We call $G_{1}=\left(V_{1}, E_{1}\right)$ a spanning subgraph of G provided $V_{1}=V$ and $E_{1} \subseteq E$.

Definition

Let G be a graph. The complement of G is the graph denoted \bar{G} defined by

$$
\begin{gathered}
V(\bar{G})=V(G) \\
E(\bar{G})=\{\{u, v\}: u, v \in V(G), u \neq v,\{u, v\} \notin E(G)\}
\end{gathered}
$$

GRAPHS

Definition

Let $G=(V, E)$ be a graph. A walk of length $n(n \in \mathbb{N})$ in G is a sequence of vertices $v_{0}, v_{1}, \ldots v_{n}$ of the graph such that $\left\{v_{0}, v_{1}\right\},\left\{v_{1}, v_{2}\right\}, \ldots\left\{v_{n-1}, v_{n}\right\}$ are edges, where $v_{0}=u$ and $v_{n}=v$.
A path of length n in a graph is a walk in which no vertex is repeated.
A cycle is a path of length at least three in which the first and last vertex are the same, but no other vertices are repeated.
(u, v)-path

GRAPHS

Definition

A graph $G=(V, E)$ is called connected provided for all $u, v \in V$ there is (u,v)-path.

Definition

Let $G=(V, E)$ be a graph and let $u, v \in V$. The distance from u to v in G is the length of the shortest (u, v)-path. In case there is no such a path, we may either say that the distance is undefined or ∞. The distance from u to v is denoted $d(u, v)$.

