Example

Write minimal conjunctive form and minimal disjunctive form of a given Boolean function.

- a) f(x, y, z) which has value 0 only in arguments (0,0,1), (1,1,0), (1,0,1), (1,0,0),
- b) f(p,q,r) which has value 1 only in arguments (1,1,1) and (0,0,1),
- c) f(p, q, r, s) which has value 0 only in arguments (0,0,1,0), (1,0,0,0), (1,0,1,0), (1,0,0,1), (1,1,0,0), (1,1,0,1) and (1,0,1,1).

Solution:

イロト イ団ト イヨト イヨ

a)

Minimal conjunctive form is $(\overline{x} \lor z) \land (y \lor \overline{z})$.

Minimal disjunctive form is $(\overline{x} \wedge \overline{z}) \vee (y \wedge z)$.

・ロト ・日下・ ・ ヨト・

MINIMAL FORMS

Minimal conjunctive form is $(\overline{p} \lor q) \land (p \lor \overline{q}) \land r$. Minimal disjunctive form is $(p \land q \land r) \lor (\overline{p} \land \overline{q} \land r)$.

MINIMAL FORMS

Minimal conjunctive form is $(\overline{p} \lor q) \land (q \lor \overline{r} \lor s) \land (\overline{p} \lor r)$. Minimal disjunctive form is $(\overline{p} \land \overline{r}) \lor (q \land r) \lor (\overline{p} \land s)$.

・ロト ・日下・ ・ ヨト・

Example

Without using Karnaugh maps, find minimal disjunctive form of the Boolean function which normal disjunctive form is given.

a) $(x \wedge y \wedge \overline{z}) \vee (\overline{x} \wedge y \wedge z) \vee (x \wedge \overline{y} \wedge \overline{z}) \vee (\overline{x} \wedge \overline{y} \wedge z),$

- b) $(x \wedge \overline{y} \wedge z) \vee (\overline{x} \wedge y \wedge z) \vee (x \wedge \overline{y} \wedge \overline{z}) \vee (\overline{x} \wedge \overline{y} \wedge z) \vee (\overline{x} \wedge \overline{y} \wedge \overline{z})$,
- c) $(x \wedge \overline{y} \wedge z) \vee (\overline{x} \wedge y \wedge z) \vee (x \wedge \overline{y} \wedge \overline{z}).$

Solution:

イロト イ団ト イヨト イヨト

a)

$$(x \land y \land \overline{z}) \lor (\overline{x} \land y \land z) \lor (x \land \overline{y} \land \overline{z}) \lor (\overline{x} \land \overline{y} \land z) = \\ ((x \land \overline{z}) \land (y \lor \overline{y})) \lor ((\overline{x} \land z) \land (\overline{y} \lor y)) = (x \land \overline{z}) \lor (\overline{x} \land z)$$
b)

$$(x \land \overline{y} \land z) \lor (\overline{x} \land y \land z) \lor (x \land \overline{y} \land \overline{z}) \lor (\overline{x} \land \overline{y} \land z) \lor (\overline{x} \land \overline{y} \land \overline{z}) = \\ ((\overline{y} \land z) \land (x \lor \overline{x})) \lor ((\overline{x} \land z) \land (y \lor \overline{y})) \lor ((\overline{y} \land \overline{z}) \land (x \lor \overline{x})) = (\overline{y} \land z) \lor (\overline{x} \land z) \lor (\overline{y} \land \overline{z})$$

$$= (\overline{y} \land (z \lor \overline{z})) \lor (\overline{x} \land z) = \overline{y} \lor (\overline{x} \land z)$$

c) $(x \wedge \overline{y} \wedge z) \lor (\overline{x} \wedge y \wedge z) \lor (x \wedge \overline{y} \wedge \overline{z}) = ((x \wedge \overline{y}) \wedge (z \lor \overline{z})) \lor (\overline{x} \wedge y \wedge z) = (x \wedge \overline{y}) \lor (\overline{x} \wedge y \wedge z).$

メロト メタト メヨト メヨト

MINIMAL FORMS

Example

Write normal disjunctive form and normal conjunctive form and also both minimal forms for of the Boolean function f(x, y, z) which is given by formula $(x \lor y) \Rightarrow \overline{z}$.

Solution:

x	y	z	f(x,y,z)
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	1

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Normal disjunctive form is $(x \land y \land \overline{z}) \lor (x \land \overline{y} \land \overline{z}) \lor (\overline{x} \land y \land \overline{z}) \lor (\overline{x} \land \overline{y} \land z) \lor (\overline{x} \land \overline{y} \land \overline{z}).$

Normal conjunctive form is $(\overline{x} \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor y \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z}).$

 $\begin{array}{l} (x \wedge y \wedge \overline{z}) \lor (x \wedge \overline{y} \wedge \overline{z}) \lor (\overline{x} \wedge y \wedge \overline{z}) \lor (\overline{x} \wedge \overline{y} \wedge z) \lor (\overline{x} \wedge \overline{y} \wedge \overline{z}) \\ = (x \wedge \overline{z}) \lor (\overline{x} \wedge \overline{z}) \lor (\overline{x} \wedge \overline{y} \wedge z) = \overline{z} \lor (\overline{x} \wedge \overline{y} \wedge z) = \overline{z} \lor (\overline{x} \wedge \overline{y}), \text{ that is minimal disjunctive form.} \end{array}$

 $(\overline{x} \vee \overline{y} \vee \overline{z}) \wedge (\overline{x} \vee y \vee \overline{z}) \wedge (x \vee \overline{y} \vee \overline{z}) = \overline{z} \vee (\overline{x} \wedge (x \vee \overline{y})) = \overline{z} \vee (\overline{x} \wedge \overline{y}) = (\overline{x} \vee \overline{z}) \wedge (\overline{y} \vee \overline{z}),$ that is minimal conjunctive form.

イロト イ団ト イヨト イヨト

MINIMAL FORMS

Minimal disjunctive form is $\overline{z} \vee (\overline{x} \wedge \overline{y})$.

Minimal conjunctive form is $(\overline{x} \lor \overline{z}) \land (\overline{y} \lor \overline{z})$.

GRAPHS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ . ■ の Q @ 16. marca 2024 10/37

A graph is a pair G = (V, E) where V is a nonempty finite set and E is a set of two-element subsets of V.

$$G = (V, E)$$

$$V = \{v_1, v_2, v_3, v_4\}, E = \{\{v_1, v_3\}, \{v_2, v_4\}, \{v_1, v_4\}, \{v_2, v_3\}\}$$

The elements of V are called the vertices of the graph, and the elements of E are called the edges of the graph.

Let G be a graph. If we neglect to give a name to the vertex set and edge set of G, we can simply write V(G) and E(G) for the vertex and edge sets, respectively.

A D F A A F F A

How to draw pictures of graphs? These pictures make graphs much easier to understang.

A drawing of the graph G = (V, E) is a mapping that assing a point in the plane for each vertex and for each edge a continuous curve between its two endpoints. A drawing of the graph is not the same thing as the graph itself.

The following two drawings both depict the same graph.

A multigraph G = (V, E) consists of a set of vertices V, a set of edges E, and a function f from E to $\{\{u, v\} : u, v \in V, u \neq v\}$. The edges e_1 and e_2 are called multiple or parallel edges if $f(e_1) = f(v_2)$.

Image: A math a math

Two vertices u and v in a graph G = (V, E) are called adjacent in G if $\{u, v\}$ is an edge of G. If $e = \{u, v\}$, the edge e is called incident with the vertices u and v.

If $\{u, v\}$ is an edge of G, we call u and v the endpoints of the edge.

Definition

Let G = (V, E) be a graph and let $v \in V$. The degree of v is the number of edges with which v is incident. The degree of v is denoted deg(v) or $\delta(v)$.

Theorem

Let G = (V, E). The sum of the degrees of the vertices in G is twice the number of edges, that is,

$$\sum_{v \in V} \deg(v) = 2 \cdot |E|$$

イロト イヨト イヨト イヨ

If all vertices in G have the same degree, we call G regular. If a graph is regular and all vertices have degree r, we also call the graph r-regular.

イロト イヨト イヨト イ

Let G be a graph. If all pairs of distinct vertices are adjacent in G, we call G complete. A complete graph on n vertices is denoted K_n .

The opposite extreme is a graph with no edges. We call such graphs edgeless.

イロト イヨト イヨト イ

Let $m, n \in \mathbb{N}$. The complete bipartite graph, $K_{m,n}$, is a graph whose vertices can be partitioned $V = V_1 \cup V_2$ such that

- $|V_1| = m \text{ and } |V_2| = n$
- for all $u \in V_1$ and for all $v \in V_2$, $\{u, v\}$ is an edge.

< □ > < □ > < □ > < □ > < □ > < □ >

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs. We say that G_1 is isomorphic to G_2 provided there is a bijection $f : V_1 \rightarrow V_2$ such that for all $u, v \in V_1$ we have $\{u, v\} \in E_1$ if and only $\{f(u), f(v)\} \in E_2$. The function f is called an isomorphism of G_1 to G_2 .

イロト イヨト イヨト イ

Let G = (V, E) and $G_1 = (V_1, E_1)$ be graphs. We call G_1 a subgraph of G provided $V_1 \subseteq V$ and $E_1 \subseteq E$.

Definition

Let G = (V, E) be a graph. We call $G_1 = (V_1, E_1)$ a spanning subgraph of G provided $V_1 = V$ and $E_1 \subseteq E$.

Definition

Let G be a graph. The complement of G is the graph denoted \overline{G} defined by

 $V(\overline{G}) = V(G)$

 $E(\overline{G}) = \{\{u, v\} : u, v \in V(G), u \neq v, \{u, v\} \notin E(G)\}$

・ロト ・日下・ ・ ヨト・

Let G = (V, E) be a graph. A walk of length n $(n \in \mathbb{N})$ in G is a sequence of vertices $v_0, v_1, \ldots v_n$ of the graph such that $\{v_0, v_1\}, \{v_1, v_2\}, \ldots \{v_{n-1}, v_n\}$ are edges, where $v_0 = u$ and $v_n = v$.

A path of length n in a graph is a walk in which no vertex is repeated. A cycle is a path of length at least three in which the first and last vertex are the same, but no other vertices are repeated.

(u, v)-path

< □ > < 同 > < 回 > < Ξ > < Ξ

A graph G = (V, E) is called connected provided for all $u, v \in V$ there is (u, v)-path.

Definition

Let G = (V, E) be a graph and let $u, v \in V$. The distance from u to v in G is the length of the shortest (u, v)-path. In case there is no such a path, we may either say that the distance is undefined or ∞ . The distance from u to v is denoted d(u, v).

A D F A A F F A