GRAPHS

GRAPHS

Definition

A graph is a pair $G=(V, E)$ where V is a nonempty finite set and E is a set of two-element subsets of V.
$G=(V, E)$
$V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{3}\right\}\right\}$
The elements of V are called the vertices of the graph, and the elements of E are called the edges of the graph.
Let G be a graph. If we neglect to give a name to the vertex set and edge set of G, we can simply write $V(G)$ and $E(G)$ for the vertex and edge sets, respectively.

GRAPHS

How to draw pictures of graphs? These pictures make graphs much easier to understang.
A drawing of the graph $G=(V, E)$ is a mapping that assing a point in the plane for each vertex and for each edge a continuous curve between its two endpoints.
A drawing of the graph is not the same thing as the graph itself.
The following two drawings both depict the same graph.

GRAPHS

Definition

A multigraph $G=(V, E)$ consists of a set of vertices V, a set of edges E, and a function f from E to $\{\{u, v\}: u, v \in V, u \neq v\}$. The edges e_{1} and e_{2} are called multiple or parallel edges if $f\left(e_{1}\right)=f\left(v_{2}\right)$.

$$
\begin{aligned}
& G=(V, E) \\
& V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\left\{v_{1}, v_{3}\right\}\right\}
\end{aligned}
$$

GRAPHS

Definition

Two vertices u and v in a graph $G=(V, E)$ are called adjacent in G if $\{u, v\}$ is an edge of G.
If $e=\{u, v\}$, the edge e is called incident with the vertices u and v.
If $\{u, v\}$ is an edge of G, we call u and v the endpoints of the edge.

Definition

Let $G=(V, E)$ be a graph and let $v \in V$. The degree of v is the number of edges with which v is incident. The degree of v is denoted $\operatorname{deg}(v)$ or $\delta(v)$.

Theorem

Let $G=(V, E)$. The sum of the degrees of the vertices in G is twice the number of edges, that is,

$$
\sum_{v \in V} \operatorname{deg}(v)=2 \cdot|E|
$$

GRAPHS

Definition

If all vertices in G have the same degree, we call G regular. If a graph is regular and all vertices have degree r, we also call the graph r-regular.

GRAPHS

Definition

Let G be a graph. If all pairs of distinct vertices are adjacent in G, we call G complete. A complete graph on n vertices is denoted K_{n}.

The opposite extreme is a graph with no edges. We call such graphs edgeless.

GRAPHS

Definition

Let $m, n \in \mathbb{N}$. The complete bipartite graph, $K_{m, n}$, is a graph whose vertices can be partitioned $V=V_{1} \cup V_{2}$ such that

- $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$
- for all $u \in V_{1}$ and for all $v \in V_{2},\{u, v\}$ is an edge.

GRAPHS

Definition

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs. We say that G_{1} is isomorphic to G_{2} provided there is a bijection $f: V_{1} \rightarrow V_{2}$ such that for all $u, v \in V_{1}$ we have $\{u, v\} \in E_{1}$ if and only $\{f(u), f(v)\} \in E_{2}$. The function f is called an isomorphism of G_{1} to G_{2}.

GRAPHS

Definition

Let $G=(V, E)$ and $G_{1}=\left(V_{1}, E_{1}\right)$ be graphs. We call G_{1} a subgraph of G provided $V_{1} \subseteq V$ and $E_{1} \subseteq E$.

Definition

Let $G=(V, E)$ be a graph. We call $G_{1}=\left(V_{1}, E_{1}\right)$ a spanning subgraph of G provided $V_{1}=V$ and $E_{1} \subseteq E$.

Definition

Let G be a graph. The complement of G is the graph denoted \bar{G} defined by

$$
\begin{gathered}
V(\bar{G})=V(G) \\
E(\bar{G})=\{\{u, v\}: u, v \in V(G), u \neq v,\{u, v\} \notin E(G)\}
\end{gathered}
$$

GRAPHS

Definition

Let $G=(V, E)$ be a graph. A walk of length $n(n \in \mathbb{N})$ in G is a sequence of vertices $v_{0}, v_{1}, \ldots v_{n}$ of the graph such that $\left\{v_{0}, v_{1}\right\},\left\{v_{1}, v_{2}\right\}, \ldots\left\{v_{n-1}, v_{n}\right\}$ are edges, where $v_{0}=u$ and $v_{n}=v$.
A path of length n in a graph is a walk in which no vertex is repeated.
A cycle is a path of length at least three in which the first and the last vertex are the same, but no other vertices are repeated.
A cycle on n vertices is denoted C_{n}.
(u, v)-path

GRAPHS

Definition

A graph $G=(V, E)$ is called connected provided for all $u, v \in V$ there is (u,v)-path.

A connected graph consists of one "piece", while a graph that is not connected consists of two or more "pieces". These "pieces"we called component of the graph.

Definition

Let $G=(V, E)$ be a graph and let $u, v \in V$. The distance from u to v in G is the length of the shortest (u, v)-path. In case there is no such a path, we may either say that the distance is undefined or ∞. The distance from u to v is denoted $d(u, v)$.

GRAPHS

Definition

Let $s_{1}, s_{2}, s_{3}, \ldots, s_{n}$ be nonnegative integer numbers. Sequence $s_{1}, s_{2}, s_{3}, \ldots, s_{n}$ is called graphical if there is a graph with n vertices whose degrees are $s_{1}, s_{2}, s_{3}, \ldots, s_{n}$.

Theorem

Havel's Theorem

Let $s_{1}, s_{2}, s_{3}, \ldots, s_{n} n \geq 2,1 \leq s_{1} \leq n-1$ be nonnegative integer numbers so that $s_{1} \geq s_{2} \geq s_{3} \geq \cdots \geq s_{n}$. This sequence is graphical if and only if the sequence $s_{2}-1, s_{3}-1, \ldots, s_{s_{1}+1}-1, s_{s_{1}+2}, \ldots, s_{n}$ is graphical.

Note that in the sequence $s_{1}, s_{2}, s_{3}, \ldots, s_{n}$ we delete number s_{1} and the following s_{1} members will be reduced by 1 .

GRAPHS

Example

Decide whether a sequence $1,1,1,2,3,3,3,4,4,4,4$ is graphical. If it is graphical sequence, sketch a drawing of a graph.

Solution:

$$
\begin{array}{|ll}
4, \frac{4,4,4,3,3,3,2,1,1,1}{3,3,3,2}, 3,3,2,1,1,1 & n=11, s_{1}=4, \\
\text { we arrange the members }
\end{array}
$$

$$
3,3,3,3,3,2,2,1,1,1 \quad n=10, s_{1}=3,
$$

$2,2,2,3,2,2,1,1,1 \quad$ we arrange the members

$$
\begin{array}{rl}
3,2,2,2,2,2,1,1,1 & n=9, s_{1}=3, \\
1,1,1,2,2,1,1,1 & n=8
\end{array}
$$

GRAPHS

The last sequence $1,1,1,2,2,1,1,1$ is graphical, because there is a graph, denoted by G_{1}, with 8 vertices whose degrees are $1,1,1,2,2,1,1,1$.

G_{1}

So, the first sequence $4,4,4,4,3,3,3,2,1,1,1$ is graphical too.
Now we sketch a drawing of the graph with 11 vertices whose degrees are $1,1,1$, 2, 3, 3, 3, 4, 4, 4, 4.
$G_{2}: 2,2,2,3,2,2,1,1,1 G_{3}: 3,3,3,2,3,3,2,1,1,1 G_{4}: 4,4,4,4,3,3,3,2,1,1,1$

GRAPHS AND MATRICES

Definition

Suppose that $G=(V, E)$ is a graph where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix B of G is the $n \times n$ zero-one matrix with 1 as its (i, j) th entry when v_{i} and v_{j} are adjacent, and 0 as its (i, j) th entry when they are not adjacent. In another words, if its adjacency matrix is $B=\left(b_{i j}\right)$, then

$$
b_{i j}= \begin{cases}1 & \text { if }\left\{v_{i}, v_{j}\right\} \in E, \\ 0 & \text { otherwise } .\end{cases}
$$

The adjacency matrix of a graph is symmetric, that $b_{i j}=b_{j i}$, since both of these entries are 1 when v_{i} and v_{j} are adjacent, and both are 0 otherwise.

GRAPHS AND MATRICES

Definition

Let $G=(V, E)$ be a graph. Suppose that $v_{1}, v_{2}, \ldots, v_{n}$ are vertices and $e_{1}, e_{2}, \ldots, e_{m}$ are the edges of G. Then the incidence matrix with respect to this ordering of V and E is the $n \times m$ matrix $A=\left(a_{i j}\right)$ where

$$
a_{i j}= \begin{cases}1 & \text { if } e_{j}=\left\{v_{i}, v_{k}\right\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

Note that in the incidence matrix A of a graph each column has two 1 's and that tha sum of a row gives the degree of the vertex identified with that row.

GRAPHS

Example

Write the adjacency matrix B and the incidence matrix A for the graph G

Solution: Vertices and edges are denoted. Incidence matrix:

$$
A=\begin{gathered}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{gathered}\left(\begin{array}{ccccccccc}
h_{1} & h_{2} & h_{3} & h_{4} & h_{5} & h_{6} & h_{7} & h_{8} & h_{9} \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right) .
$$

GRAPHS

Adjacency matrix:

$$
B=\begin{gathered}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{gathered}\left(\begin{array}{cccccc}
v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 0
\end{array}\right) .
$$

GRAPHS AND MATRICES

Let B be adjacency matrix of a connected graph $G=(V, H),|V|=n$. Let $B^{(1)}$ be the matrix obtained from B by replacing 0 's by 1 's on the main diagonal. Thus, $B^{(1)}=B+E$, where E is the identity matrix of the same size. For $k \geq 1$, define zero-one matrix

$$
B^{(k)}=B^{(k-1)} \cdot B^{(1)}
$$

such that its (i, j) th entry

$$
b_{i j}^{(k)}=\sum_{r=1}^{n} b_{i r}^{(k-1)} \cdot b_{r j}^{(1)}
$$

is 1 if and only if there is at least one $r, r \in\{1,2, \ldots n\}$, for which both $b_{i r}^{(k-1)}=1$ and $b_{r j}^{(1)}=1$.

GRAPHS AND MATRICES

Theorem

Let B be the adjacency matrix of a connected graph $G=(V, E),|V|=n$. Then for any $k, k=1,2, \ldots, n$, the (i, j) th entry of the matrix $B^{(k)}$ equals 1 if and only if $d\left(v_{i}, v_{j}\right) \leq k$.

Note that the (i, j) th entry of the matrix $B^{(k)}$ equals 0 if and only if $d\left(v_{i}, v_{j}\right)>k$.

Theorem

Let $G=(V, E),|V|=n$ be a graph. The graph G is connected if and only if all entries of matrix $B^{(n-1)}$ are equal to 1 .

GRAPHS AND MATRICES

Example

Let

$$
B=\left(\begin{array}{llllll}
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right) .
$$

be adjacency matrix of the graph. Without drawing a graph, determine pairs of vertices whose distance is
a) greater than 2 ,
b) less than or equal to 3 ,
c) less than 2 ,
d) equal to 3 .

Is a given graph connected?

GRAPHS AND MATRICES

Solution: $|V|=6$

$$
\begin{aligned}
B^{(1)}=B+E= & \left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right) . \\
B^{(2)}=B^{(1)} \cdot B^{(1)} & =\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

GRAPHS AND MATRICES

$$
\begin{gathered}
B^{(3)}=B^{(2)} \cdot B^{(1)}=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \\
B^{(4)}=B^{(3)} \cdot B^{(1)}=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \\
B^{(5)}=B^{(4)} \cdot B^{(1)}=B^{(4)}
\end{gathered}
$$

GRAPHS AND MATRICES

a) Distance $d\left(v_{i}, v_{j}\right)>2$ if and only if $b_{i j}^{(2)}=0$.

It applies to distances: $d\left(v_{1}, v_{4}\right), d\left(v_{2}, v_{4}\right), d\left(v_{2}, v_{6}\right), d\left(v_{4}, v_{5}\right), d\left(v_{5}, v_{6}\right)$.
b) Distance $d\left(v_{i}, v_{j}\right) \leq 3$ if and only if $b_{i j}^{(3)}=1$.

It applies to all distances except $d\left(v_{2}, v_{4}\right)$ and $d\left(v_{4}, v_{5}\right)$.
c) Distance $d\left(v_{i}, v_{j}\right) 2\left(\mathrm{t} . \mathrm{j} . d\left(v_{i}, v_{j}\right) \leq 2\right)$ if and only if $b_{i j}^{(1)}=1$.

It applies to distances: $d\left(v_{1}, v_{1}\right), d\left(v_{1}, v_{2}\right), d\left(v_{1}, v_{3}\right), d\left(v_{1}, v_{5}\right), d\left(v_{2}, v_{2}\right)$, $d\left(v_{3}, v_{3}\right), d\left(v_{3}, v_{6}\right), d\left(v_{4}, v_{4}\right), d\left(v_{4}, v_{6}\right), d\left(v_{5}, v_{5}\right), d\left(v_{6}, v_{6}\right)$.
d) Distance $d\left(v_{i}, v_{j}\right)=3\left(\right.$ t. j. $d\left(v_{i}, v_{j}\right) \leq 3$ and $\left.d\left(v_{i}, v_{j}\right)>2\right)$ if and only if $b_{i j}^{(2)}=0$ and $b_{i j}^{(3)}=1$.
$d\left(v_{1}, v_{4}\right), d\left(v_{2}, v_{6}\right), d\left(v_{5}, v_{6}\right)$.
As matrix $B^{(5)}$ contains only 1 's, then the given graph is connected.

TREES

Definition

A tree is a connected graph with no cycles.

Definition

A leaf of a graph is a vertex of degree 1 .

Theorem

Every tree with at least two vertices has a leaf.

Theorem

Let T be a tree. For any two vertices u and v in $V(T)$, there is a unique (u, v)-path. Conversely, if G is a graph with the property that for any two vertices u, v there is exactly one (u, v)-path, then G must be a tree.

TREES

Theorem

Let T be a tree with $n \geq 1$ vertices. Then T has $n-1$ edges.

Theorem

Let T be a graph with $n \geq 1$ vertices. The following are equivalent.
(a) T is a tree.
(b) T is connected without cycles.
(c) T is connected and has $n-1$ edges.
(d) T has no cycles and has $n-1$ edges.

SPANNING TREES

Definition

Let G be a graph. A spanning tree of G is a spanning subgraph of G that is a tree.

Theorem

A graph has a spanning tree if and only if it is connected.

Graph $K_{3,3}$ and its spanning tree.

SPANNING TREES

Theorem

Let B be an adjacency matrix for a graph $G=(V, E),|V|=n$. Assume a $n \times n$ matrix $D=\left(d_{i j}\right)$ where

$$
d_{i j}= \begin{cases}0 & \text { if } i \neq j, \\ \delta\left(v_{i}\right) & \text { if } i=j .\end{cases}
$$

The number of spanning trees of G, denoted $p(T)$, is determine by formula

$$
p(T)=\operatorname{det}(D-B)_{i},
$$

where $(D-B)_{i}$ is a matrix $D-B$ without i-th row and i-th column.

COLOURING

Definition

Let G be a graph and let k be a positive integer. A k-colouring of G is a function

$$
f: V(G) \rightarrow\{1,2, \ldots, k\}
$$

We call this colouring proper provided

$$
\forall\{x, y\} \in E(G): f(x) \neq f(y)
$$

If a graph has a proper k-colouring, we call it k-colourable.
To each vertex v the function f associates a value $f(v)$. The value $f(v)$ is a colour of v. The palette of colours we use in the set $\{1,2, \ldots, k\}$.
The condition $\forall\{x, y\} \in E(G): f(x) \neq f(y)$ means that whenever vertices x and y are adjacent, then these vertices must get different colours. In a proper colouring, adjacent vertices are not assigned the same colour. The goal in graph colouring is to use as few colours as possible.

COLOURING

Definition

Let G be a graph. The smallest possitive integer k for which G is k-colourable is called the chromatic number of G.
The chromatic number of G is denoted $\chi(G)$.

Theorem

Let G be a graph with maximum degree Δ. Then $\chi(G) \leq \Delta+1$. The chromatic number of G is denoted.

COLOURING

Definition

A graph G is called bipartite provided it is two colorable.

Theorem

A graph is bipartite if and only if it does not contain an odd cycle.

PLANAR GRAPHS

Definition

A planar graph is a graph that has a drawing in the plane in which two edges do not intersect (except at an endpoint if they both are incident with the same vertex).

PLANAR GRAPHS

Theorem

Euler's Theorem
Let G be a connected planar graph with n vertices and m edges. Choose a drawing for G without edge crossings, and let fbe the number of faces in the drawing. Then

$$
n-m+f=2
$$

Corollary

(1) Let G be a planar graph with at least 2 vertices. Then $|E(G)| \leq 3 \cdot|V(G)|-6$.
(2) Let G be a planar graph with at least 2 vertices and G does not contain K_{3} as a subgraph. Then $|E(G)| \leq 2 \cdot|V(G)|-4$.
(3) Let G be a planar graph. Then G contains a vertex with degree at most five.
(4) The graph $K_{3,3}$ is nonplanar.
(5) The graph K_{5} is nonplanar.

PLANAR GRAPHS

If a graph is a planar, so will be any graph obtained by removing an edge $\{u, v\}$ and adding a new vertex w together with edges $\{u, w\}$ and $\{w, v\}$. Such an operation is called an elementary subdivision. The graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ are called homeomorphic if they can be obtained from the same graph by a sequence of elementary subdivision.

Graphs G_{6} and G_{7}

are homeomorphic because

PLANAR GRAPHS

Theorem

Kuratowski Theorem
A graph is planar if and only if it does not contain a subdivision of $K_{3,3}$ or K_{5} as a subgraph.

is nonplanar because contains subgraph
which is subdivision of $K_{3,3}$

DIGRAPHS

Definition

A digraph (directed graph) $\vec{G}=(V, E)$ consists of set of vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and set of edges E, that is subset of the set $V \times V-\left\{\left(v_{1}, v_{1}\right), \ldots,\left(v_{n}, v_{n}\right)\right\}$. If $\left(v_{i}, v_{j}\right)$ is an edge, then the vertex v_{i} is called the initial vertex and the vertex v_{j} is called the terminal vertex.

Definition

Let $\vec{G}=(V, E)$ be a digraph and let $v \in V$. The out-degree of v, denoted $\delta^{+}(v)$, is the number of edges for which vetrex v is the initial vertex. The in-degree of v, denoted $\delta^{-}(v)$, is the number of edges for which vetrex v is the terminal vertex. The vertex v is called a source if $\delta^{+}(v)>0$ and $\delta^{-}(v)=0$. The vertex v is called a sink if $\delta^{+}(v)=0$ and $\delta^{-}(v)>0$.

DIGRAPHS

Definition

Let $\vec{G}_{1}=\left(V_{1}, E_{1}\right)$ and $\vec{G}_{2}=\left(V_{2}, E_{2}\right)$ be digraphs. We say that \vec{G}_{1} is isomorphic to \vec{G}_{2} provided there is a bijection $f: V_{1} \rightarrow V_{2}$ such that for all $u, v \in V_{1}$ we have $(u, v) \in E_{1}$ if and only $(f(u), f(v)) \in E_{2}$. The function f is called an isomorphism of \vec{G}_{1} to \vec{G}_{2}.

DIGRAPHS

path, cycle - will have to follows the direction of edges

Definition

A digraph is called acyclic if it does not contain a cycle.

Theorem

Let $\vec{G}=(V, E)$ be acyclic digraph. Then there is a vertex $v \in V$ which is a source.

Theorem

A digraph $\vec{G}=(V, E)$ is acyclic if and only if it is possible denoted the vertices by numbers $1,2, \ldots,|V|$ such that for every edge (i, j) we have $i<j$.

DIGRAPHS AND MATRICES

Definition

Suppose that $\vec{G}=(V, E)$ is a digraph where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix B of \vec{G} is the $n \times n$ zero-one matrix with 1 as its (i, j) th entry when $\left(v_{i}, v_{j}\right) \in E$, and 0 as its (i, j) th entry when $\left(v_{i}, v_{j}\right) \notin E$. In another words, if its adjacency matrix is $B=\left(b_{i j}\right)$, then

$$
b_{i j}= \begin{cases}1 & \text { if }\left(v_{i}, v_{j}\right) \in E \\ 0 & \text { otherwise }\end{cases}
$$

The adjacency matrix of a digraph, in generally, is not symmetric.

DIGRAPHS AND MATRICES

Definition

Let $\vec{G}=(V, E)$ be a graph. Suppose that $v_{1}, v_{2}, \ldots, v_{n}$ are vertices and $e_{1}, e_{2}, \ldots, e_{m}$ are the edges of \vec{G}. Then the incidence matrix with respect to this ordering of V and E is the $n \times m$ matrix $A=\left(a_{i j}\right)$ where

$$
a_{i j}=\left\{\begin{aligned}
1 & \text { if } e_{j}=\left(v_{i}, v_{k}\right) \in E, \\
-1 & \text { if } e_{j}=\left(v_{k}, v_{i}\right) \in E, \\
0 & \text { otherwise. }
\end{aligned}\right.
$$

DIGRAPHS AND MATRICES

Example

Write the adjacency matrix B and the incidence matrix A for the digraph \vec{G}

Solution: Vertices and edges are denoted. Incidence matrix:

$$
A=\begin{aligned}
& v_{1} \\
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4} \\
& v_{5}
\end{aligned}\left(\begin{array}{rrrrrrrr}
h_{1} & h_{2} & h_{3} & h_{4} & h_{5} & h_{6} & h_{7} & h_{8} \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 1 & 1 & 0 \\
1 & 0 & -1 & -1 & 0 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 & 0 & -1 & 0 & 1
\end{array}\right) .
$$

DIGRAPHS AND MATRICES

Adjacency matrix:

$$
B=\begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4} \\
& v_{5}
\end{aligned}\left(\begin{array}{ccccc}
v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0
\end{array}\right) .
$$

DIRECTED TREES

Definition

Directed tree \vec{T} is a digraph which is tree which after cancelling the direction of the edges is a tree.

Definition

Let \vec{G} be a digraph which was created by the direction of the edges of the graph G. Let K be a spanning tree of the graph G. Then the digraph \vec{K} which was created by the direction of the edges of the graph K, is called directed spanning tree.

DIRECTED TREES

Theorem

Let B be an adjacency matrix for a digraph $\vec{G}=(V, E),|V|=n$. Assume a $n \times n$ matrix $D=\left(d_{i j}\right)$ where

$$
d_{i j}= \begin{cases}0 & \text { if } i \neq j, \\ \delta^{+}\left(v_{i}\right)+\delta^{-}\left(v_{i}\right) & \text { if } i=j .\end{cases}
$$

The number of directed spanning trees of \vec{G}, denoted $p(\vec{T})$, is determine by formula

$$
p(\vec{T})=\operatorname{det}\left(D-B-B^{T}\right)_{i},
$$

where $\left(D-B-B^{T}\right)_{i}$ is a matrix $D-B-B^{T}$ without i-th row and i-th column.

GRAPH ALGORITHMS

Definition

A $G=(V, E)$ be a graph (or $\vec{G}=(V, E)$ be a digraph) is called weighted graph (digraph) if and only if each edge e_{i} has an associated some positive number $w\left(e_{i}\right)$ which is called weight (cost, length).

GRAPH ALGORITHMS

Weight of the spanning tree is a sum of the weights of its edges.

Kruskal's algorithm

Input: Connected weighted graph $G=(V, E)$.
Output: Minimum spanning tree T.
Suppose the graph has n vertices. We will sort the weights of edges in non-decreasing order. We start with the discrete factor T of the given graph. In each iteration, we add the edge with the smallest weight to T so that no cycle is created. If T has $n-1$ edges, then we finish and T is the minimum spanning tree of the graph G.

If the graph has m edges, algorithm complexity is $O(m \cdot \log n)$.

GRAPH ALGORITHMS

Distance in weighted graph

Positive number $w(\{i, j\})$ is the weight of the edge $\{i, j\}$. The length of (u-v) path in the weighted graph is the sum of the weights of the edges of this path. The shortest path between two vertices is the path with the shortest length between these vertices. Distance of two vertices $v_{i} \mathbf{a} v_{j}$ in the weighted graph, denoted $d_{w}\left(v_{i}, v_{j}\right)$, is the length of the shortest path from v_{i} to v_{j}.

In the following Dijkstra's algorithm, we initially have given two vertices, let's denote them a, z, whose distance we want to calculate. We assign $L\left(v_{i}\right)$ labels to vertices v_{i}, which are temporary at first, subject to change, and later become permanent. If the label $L\left(v_{i}\right)$ is permanent for the vertex v_{i}, then the value of $L\left(v_{i}\right)$ is the length of the shortest path from the vertex a to the vertex v_{i}.

GRAPH ALGORITHMS

Dijkstra's algorithm

Input: Connected weighted graph $G=(V, H)$, vertices a, z.
Output: $L(z)$ is the length of the shortest path from the vertex a to the vertex z.
(1) Assume $L(a)=0$. For all vertices $x \neq a$, let $L(x)=\infty$.
(2) If $z \notin V$, then we finish and $L(z)$ is the length of the shortest path from a to z.
(3) Let's choose the vertex $v \in V$ with the smallest value of $L(v)$. The set $V=V-\{v\}$.
(4) We assign the label $L(x)=\min \{L(x), L(v)+w(\{v, x\})$ to each vertex $x \in V$ that is adjacent to the vertex v. Jump to step 2.
Complexity algorithm is $O\left(n^{2}\right)$.

GRAPH ALGORITHMS

Distance in weighted digraph

Similar to weighted graphs, we also define the distance between two vertices in weighted digraphs. We just have to consider the given orientation of the edges. Let the positive number $w((i, j))$ be the weight of the edge (i, j). A weighted digraph can be described by a cost matrix.

Definition

Let $\vec{G}=(V, E)$ be a digraph, where $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. Digraph cost matrix is a $n \times n$ matrix $W=\left(w_{i j}\right)$, where

$$
w_{i j}= \begin{cases}w\left(\left(v_{i}, v_{j}\right)\right) & \text { ak }\left(v_{i}, v_{j}\right) \in E \\ \infty & a k\left(v_{i}, v_{j}\right) \notin E \\ 0 & \text { ak } i=j\end{cases}
$$

GRAPH ALGORITHMS

The length of a path in a weighted digraph is the sum of the weights of the edges of this path. The shortest path from vertex v_{i} to vertex v_{j} is the path with the shortest length among all paths from v_{i} to v_{j}. The distance between two vertices v_{i} and v_{j} in the weighted digraph, denoted by $\vec{d}_{w}\left(v_{i}, v_{j}\right)$, is the length of the shortest path from v_{i} to v_{j}. If no such path exists, then $\vec{d}_{w}\left(v_{i}, v_{j}\right)=\infty$. It is obvious that $\vec{d}_{w}\left(v_{i}, v_{i}\right)=0$. To determine the distances of two vertices in a weighted digraph, we can use the previous Dijkstra's algorithm, if we consider the direction of the edges.

GRAPH ALGORITHMS

We want to find out the distance between all pairs of vertices, so we calculate the distance matrix.

Definition

Let $\vec{G}=(V, H)$ be a digraph on n vertices. Distance matrix for given digraph \vec{G} is $n \times n$ matrix $D=\left(d_{i j}\right)$, where $d_{i j}=\vec{d}_{w}\left(v_{i}, v_{j}\right)$.

To calculate the distance matrix in the weighted digraph, we use Floyd's algorithm.

GRAPH ALGORITHMS

Floyd's algorithm

Input: Weighted digraph with vertices $v_{1}, v_{2}, \ldots v_{n}$.
Output: Distance matrix $D=\left(d_{i j}\right)$.
(1) We put $D^{(0)}=W$.
(2) We create a matrix $D^{(k)}=\left(d_{i j}^{(k)}\right)$ such that

$$
d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\}
$$

(3) If $k=n$, we finish and the matrix $D^{(k)}=D$. If $k<n$, we put $k=k+1$ and jump to step 2.
Complexity algorithm is $O\left(n^{3}\right)$.

